Gold miner
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1889 Accepted Submission(s): 740
Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Submit Status Practice HDU 4341
Problem Description
Homelesser likes playing Gold miners in class. He has to pay much attention to the teacher to avoid being noticed. So he always lose the game. After losing many times, he wants your help.
To make it easy, the gold becomes a point (with the area of 0). You are given each gold‘s position, the time spent to get this gold, and the value of this gold. Maybe some pieces of gold are co-line, you can only get these pieces in order. You can assume it can turn to any direction immediately.
Please help Homelesser get the maximum value.
Input
There are multiple cases.
In each case, the first line contains two integers N (the number of pieces of gold), T (the total time). (0<N≤200, 0≤T≤40000)
In each of the next N lines, there four integers x, y (the position of the gold), t (the time to get this gold), v (the value of this gold). (0≤|x|≤200, 0<y≤200,0<t≤200, 0≤v≤200)
Output
Print the case number and the maximum value for each test case.
Sample Input
3 10
1 1 1 1
2 2 2 2
1 3 15 9
3 10
1 1 13 1
2 2 2 2
1 3 4 7
Sample Output
Case 1: 3
Case 2: 7
Author
HIT
Source
2012 Multi-University Training Contest 5
Recommend
zhuyuanchen520
1 #include <stdio.h> 2 #include <string.h> 3 #include <cmath> 4 #include <algorithm> 5 using namespace std; 6 7 struct Node 8 { 9 int x; 10 int y; 11 int t; 12 int v; 13 }a[205]; 14 15 bool cmp(Node pp,Node qq) 16 { 17 double px,py,qx,qy; 18 px=(double)pp.x,py=(double)pp.y; 19 qx=(double)qq.x,qy=(double)qq.y; 20 if(fabs(atan2(px,py)-atan2(qx,qy))>(1e-8)) 21 { 22 return atan2(px,py)<atan2(qx,qy); 23 } 24 else 25 { 26 return (px*px+py*py)<(qx*qx+qy*qy); 27 } 28 } 29 30 bool compare(Node pp,Node qq) 31 { 32 double px,py,qx,qy; 33 px=(double)pp.x,py=(double)pp.y; 34 qx=(double)qq.x,qy=(double)qq.y; 35 if(fabs(atan2(px,py)-atan2(qx,qy))<=(1e-8)) 36 return true; 37 else 38 return false; 39 } 40 41 int dp[205][40005],coc[205][40005]; 42 43 int main() 44 { 45 int n,T,cas=1; 46 int i,j,k; 47 int b[205]; 48 while(scanf("%d %d",&n,&T)!=EOF) 49 { 50 memset(b,0,sizeof(b)); 51 for(i=1;i<=n;i++) 52 scanf("%d %d %d %d",&a[i].x,&a[i].y,&a[i].t,&a[i].v); 53 sort(a+1,a+n+1,cmp); 54 for(i=1;i<n;i++) 55 { 56 for(j=i+1;j<=n;j++) 57 { 58 if(compare(a[i],a[j])) 59 b[i]++; 60 else 61 break; 62 } 63 } 64 for(i=0;i<=n;i++) 65 { 66 for(j=0;j<=T;j++) 67 { 68 dp[i][j]=0; 69 coc[i][j]=0; 70 } 71 } 72 73 for(i=1;i<=n;i++) 74 { 75 for(j=0;j<=T;j++) 76 { 77 dp[i][j]=coc[i][j]; 78 } 79 80 for(j=0;j+a[i].t<=T;j++) 81 { 82 dp[i][j+a[i].t]=max(dp[i][j+a[i].t],coc[i][j]+a[i].v); 83 if(b[i]>0) 84 { 85 coc[i+1][j+a[i].t]=max(coc[i+1][j+a[i].t],coc[i][j]+a[i].v); 86 } 87 } 88 89 for(j=0;j<=T;j++) 90 { 91 dp[i][j]=max(dp[i-1][j],dp[i][j]); 92 coc[i+b[i]+1][j]=max(coc[i+b[i]+1][j],dp[i][j]); 93 } 94 } 95 96 /*for(i=1;i<=n;i++) 97 printf("%d ",a[i].v); 98 printf("\n\n"); 99 for(i=1;i<=n;i++) 100 { 101 for(j=1;j<=T;j++) 102 { 103 printf("%d ",coc[i][j]); 104 } 105 printf("\n"); 106 } 107 printf("\n"); 108 for(i=1;i<=n;i++) 109 { 110 for(j=1;j<=T;j++) 111 { 112 printf("%d ",dp[i][j]); 113 } 114 printf("\n"); 115 } 116 printf("\n");*/ 117 118 int ans=0; 119 for(j=0;j<=T;j++) 120 if(dp[n][j]>ans) 121 ans=dp[n][j]; 122 printf("Case %d: %d\n",cas++,ans); 123 } 124 return 0; 125 }