Ellipse
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1358 Accepted Submission(s): 532
Problem Description
Math is important!! Many students failed in 2+2’s mathematical test, so let‘s AC this problem to mourn for our lost youth..
Look this sample picture:
A ellipses in the plane and center in point O. the L,R lines will be vertical through the X-axis. The problem is calculating the blue intersection area. But calculating the intersection area is dull, so I have turn to you, a talent of programmer. Your task
is tell me the result of calculations.(defined PI=3.14159265 , The area of an ellipse A=PI*a*b )
Input
Input may contain multiple test cases. The first line is a positive integer N, denoting the number of test cases below. One case One line. The line will consist of a pair of integers a and b, denoting the ellipse equation ,
A pair of integers l and r, mean the L is (l, 0) and R is (r, 0). (-a <= l <= r <= a).
Output
For each case, output one line containing a float, the area of the intersection, accurate to three decimals after the decimal point.
Sample Input
2 2 1 -2 2 2 1 0 2
Sample Output
6.283 3.142
Author
威士忌
Source
HZIEE 2007 Programming Contest
Recommend
lcy
Simpson积分。
这道题中椭圆公式为x/a^2+y/b^2=1 因此f(x)=2*b*sqrt(1-x^2/a^2)
#include <iostream> #include <algorithm> #include <cstring> #include <cmath> #include <cstdio> #define eps 1e-9 using namespace std; double a,b,l,r; double F(double x) { return 2*b*sqrt((double)1-x*x/(a*a)); } double Calc(double l,double r) { double m=(l+r)/(double)2; return (r-l)*(F(l)+(double)4*F(m)+F(r))/(double)6; } double Simpson(double l,double r) { double m=(l+r)/(double)2; double fl=Calc(l,m),fr=Calc(m,r); if (fabs(fl+fr-Calc(l,r))<eps) return fl+fr; return Simpson(l,m)+Simpson(m,r); } int main() { int T; scanf("%d",&T); while (T--) { scanf("%lf%lf%lf%lf",&a,&b,&l,&r); printf("%.3lf\n",Simpson(l,r)); } return 0; }
WA是因为精度不够。