[ACM] POJ 1141 Brackets Sequence (区间动态规划)

Brackets Sequence

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 25087   Accepted: 7069   Special Judge

Description

Let us define a regular brackets sequence in the following way:

1. Empty sequence is a regular sequence.

2. If S is a regular sequence, then (S) and [S] are both regular sequences.

3. If A and B are regular sequences, then AB is a regular sequence.

For example, all of the following sequences of characters are regular brackets sequences:

(), [], (()), ([]), ()[], ()[()]

And all of the following character sequences are not:

(, [, ), )(, ([)], ([(]

Some sequence of characters ‘(‘, ‘)‘, ‘[‘, and ‘]‘ is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2
... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n.

Input

The input file contains at most 100 brackets (characters ‘(‘, ‘)‘, ‘[‘ and ‘]‘) that are situated on a single line without any other characters among them.

Output

Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.

Sample Input

([(]

Sample Output

()[()]

Source

Northeastern Europe 2001

解题思路:

dp[i][j] 代表从i到j位置中至少添加几个括号使得括号匹配,pos[i][j]= -1,说明 str[i] str[j]是一对匹配的括号,否则记录的是从哪个位置把str[i].....str[j]分为两部分,输出答案采用递归的形式。

代码:

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
const int maxn=220;
const int inf=0x7fffffff;
int pos[maxn][maxn];//从i到j在哪里分开
int dp[maxn][maxn];//从i到j至少添几个符号
char str[maxn];
int len;

void print(int i,int j)
{
    if(i>j)
        return ;//递归出口
    if(i==j)
    {
        if(str[i]=='('||str[i]==')')
            cout<<"()";
        else
            cout<<"[]";
    }
    else if(pos[i][j]==-1)//两边是对称的
    {
        cout<<str[i];
        print(i+1,j-1);
        cout<<str[j];
    }
    else//可分割
    {
        print(i,pos[i][j]);
        print(pos[i][j]+1,j);
    }
}

int main()
{
    cin>>str;
    len=strlen(str);
    memset(dp,0,sizeof(dp));
    for(int i=0;i<len;i++)
        dp[i][i]=1;
    for(int k=1;k<len;k++)//长度
        for(int i=0;i+k<len;i++)//起点
        {
            int j=i+k;
            dp[i][j]=inf;
            if((str[i]=='('&&str[j]==')')||(str[i]=='['&&str[j]==']'))
            {
                dp[i][j]=dp[i+1][j-1];
                pos[i][j]=-1;//暂时让它等于-1
            }
            for(int mid=i;mid<j;mid++)//这个必须要执行的。
            {
                if(dp[i][j]>(dp[i][mid]+dp[mid+1][j]))
                {
                    dp[i][j]=dp[i][mid]+dp[mid+1][j];
                    pos[i][j]=mid;
                }
            }
        }
    print(0,len-1);
    cout<<endl;
    return 0;
}

[ACM] POJ 1141 Brackets Sequence (区间动态规划)

时间: 2024-10-05 08:27:17

[ACM] POJ 1141 Brackets Sequence (区间动态规划)的相关文章

POJ 1141 Brackets Sequence (区间dp 记录路径)

题目大意: 给出一种不合法的括号序列,要求构造出一种合法的序列,使得填充的括号最少. 思路分析: 如果只要求输出最少的匹配括号的数量,那么就是简单的区间dp dp[i][j]表示 i - j 之间已经合法了最少添加的括号数. 转移 就是 dp[i] [j] = min  (dp[i+1][j]+1 , dp[ i+ 1] [ k -1 ] + dp[k+1] [j] (i k 位置的括号匹配)) 其次我们要记录路径,你发现  如果 dp [i] [j] 是由 dp [i+1] [j] 转移过来的

uva1626 poj 1141 Brackets Sequence 区间dp 打印路径

// poj 1141 Brackets Sequence // 也是在紫书上看的一题,uva就是多了一个t组数据. // 经典区间dp // dp(i,j)表示区间[i,j]内所需要增加的括号数目 // 则分为两种情况 // 一种是s[i]和s[j]是匹配的则 // dp[i][j] = min(dp[i][j],dp[i+1][j-1]) // 另外一种情况是不匹配 // dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]){i<k<j}; // 但是无

poj 1141 Brackets Sequence (区间DP)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25893   Accepted: 7295   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence 区间dp,分块记录

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35049   Accepted: 10139   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a r

POJ #1141 - Brackets Sequence - TODO: POJ website issue

A bottom-up DP. To be honest, it is not easy to relate DP to this problem. Maybe, all "most"\"least" problems can be solved using DP.. Reference: http://blog.sina.com.cn/s/blog_8e6023de01014ptz.html There's an important details to AC:

区间DP [POJ 1141] Brackets Sequence

Brackets Sequence Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, th

POJ 1141 Brackets Sequence (区间DP)

Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular

POJ 1141 Brackets Sequence (线性dp 括号匹配 经典题)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26407   Accepted: 7443   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re

poj 1141 Brackets Sequence

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32662   Accepted: 9441   Special Judge Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular sequence. 2. If S is a re