[转]Multivariate Time Series Forecasting with LSTMs in Keras

1. Air Pollution Forecasting

In this tutorial, we are going to use the Air Quality dataset.

This is a dataset that reports on the weather and the level of pollution each hour for five years at the US embassy in Beijing, China.

The data includes the date-time, the pollution called PM2.5 concentration, and the weather information including dew point, temperature, pressure, wind direction, wind speed and the cumulative number of hours of snow and rain. The complete feature list in the raw data is as follows:

  1. No: row number
  2. year: year of data in this row
  3. month: month of data in this row
  4. day: day of data in this row
  5. hour: hour of data in this row
  6. pm2.5: PM2.5 concentration
  7. DEWP: Dew Point
  8. TEMP: Temperature
  9. PRES: Pressure
  10. cbwd: Combined wind direction
  11. Iws: Cumulated wind speed
  12. Is: Cumulated hours of snow
  13. Ir: Cumulated hours of rain

We can use this data and frame a forecasting problem where, given the weather conditions and pollution for prior hours, we forecast the pollution at the next hour.

This dataset can be used to frame other forecasting problems.
Do you have good ideas? Let me know in the comments below.

You can download the dataset from the UCI Machine Learning Repository.

Download the dataset and place it in your current working directory with the filename “raw.csv“.

2. Basic Data Preparation

The data is not ready to use. We must prepare it first.

Below are the first few rows of the raw dataset.

1

2

3

4

5

6

No,year,month,day,hour,pm2.5,DEWP,TEMP,PRES,cbwd,Iws,Is,Ir

1,2010,1,1,0,NA,-21,-11,1021,NW,1.79,0,0

2,2010,1,1,1,NA,-21,-12,1020,NW,4.92,0,0

3,2010,1,1,2,NA,-21,-11,1019,NW,6.71,0,0

4,2010,1,1,3,NA,-21,-14,1019,NW,9.84,0,0

5,2010,1,1,4,NA,-20,-12,1018,NW,12.97,0,0

The first step is to consolidate the date-time information into a single date-time so that we can use it as an index in Pandas.

A quick check reveals NA values for pm2.5 for the first 24 hours. We will, therefore, need to remove the first row of data. There are also a few scattered “NA” values later in the dataset; we can mark them with 0 values for now.

The script below loads the raw dataset and parses the date-time information as the Pandas DataFrame index. The “No” column is dropped and then clearer names are specified for each column. Finally, the NA values are replaced with “0” values and the first 24 hours are removed.

The “No” column is dropped and then clearer names are specified for each column. Finally, the NA values are replaced with “0” values and the first 24 hours are removed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

from pandas import read_csv

from datetime import datetime

# load data

def parse(x):

return datetime.strptime(x, ‘%Y %m %d %H‘)

dataset = read_csv(‘raw.csv‘,  parse_dates = [[‘year‘, ‘month‘, ‘day‘, ‘hour‘]], index_col=0, date_parser=parse)

dataset.drop(‘No‘, axis=1, inplace=True)

# manually specify column names

dataset.columns = [‘pollution‘, ‘dew‘, ‘temp‘, ‘press‘, ‘wnd_dir‘, ‘wnd_spd‘, ‘snow‘, ‘rain‘]

dataset.index.name = ‘date‘

# mark all NA values with 0

dataset[‘pollution‘].fillna(0, inplace=True)

# drop the first 24 hours

dataset = dataset[24:]

# summarize first 5 rows

print(dataset.head(5))

# save to file

dataset.to_csv(‘pollution.csv‘)

Running the example prints the first 5 rows of the transformed dataset and saves the dataset to “pollution.csv“.

1

2

3

4

5

6

7

pollution  dew  temp   press wnd_dir  wnd_spd  snow  rain

date

2010-01-02 00:00:00      129.0  -16  -4.0  1020.0      SE     1.79     0     0

2010-01-02 01:00:00      148.0  -15  -4.0  1020.0      SE     2.68     0     0

2010-01-02 02:00:00      159.0  -11  -5.0  1021.0      SE     3.57     0     0

2010-01-02 03:00:00      181.0   -7  -5.0  1022.0      SE     5.36     1     0

2010-01-02 04:00:00      138.0   -7  -5.0  1022.0      SE     6.25     2     0

Now that we have the data in an easy-to-use form, we can create a quick plot of each series and see what we have.

The code below loads the new “pollution.csv” file and plots each series as a separate subplot, except wind speed dir, which is categorical.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

from pandas import read_csv

from matplotlib import pyplot

# load dataset

dataset = read_csv(‘pollution.csv‘, header=0, index_col=0)

values = dataset.values

# specify columns to plot

groups = [0, 1, 2, 3, 5, 6, 7]

i = 1

# plot each column

pyplot.figure()

for group in groups:

pyplot.subplot(len(groups), 1, i)

pyplot.plot(values[:, group])

pyplot.title(dataset.columns[group], y=0.5, loc=‘right‘)

i += 1

pyplot.show()

Running the example creates a plot with 7 subplots showing the 5 years of data for each variable.

Line Plots of Air Pollution Time Series

3. Multivariate LSTM Forecast Model

In this section, we will fit an LSTM to the problem.

LSTM Data Preparation

The first step is to prepare the pollution dataset for the LSTM.

This involves framing the dataset as a supervised learning problem and normalizing the input variables.

We will frame the supervised learning problem as predicting the pollution at the current hour (t) given the pollution measurement and weather conditions at the prior time step.

This formulation is straightforward and just for this demonstration. Some alternate formulations you could explore include:

  • Predict the pollution for the next hour based on the weather conditions and pollution over the last 24 hours.
  • Predict the pollution for the next hour as above and given the “expected” weather conditions for the next hour.

We can transform the dataset using the series_to_supervised() function developed in the blog post:

First, the “pollution.csv” dataset is loaded. The wind speed feature is label encoded (integer encoded). This could further be one-hot encoded in the future if you are interested in exploring it.

Next, all features are normalized, then the dataset is transformed into a supervised learning problem. The weather variables for the hour to be predicted (t) are then removed.

The complete code listing is provided below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

# convert series to supervised learning

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]

df = DataFrame(data)

cols, names = list(), list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

names += [(‘var%d(t-%d)‘ % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

if i == 0:

names += [(‘var%d(t)‘ % (j+1)) for j in range(n_vars)]

else:

names += [(‘var%d(t+%d)‘ % (j+1, i)) for j in range(n_vars)]

# put it all together

agg = concat(cols, axis=1)

agg.columns = names

# drop rows with NaN values

if dropnan:

agg.dropna(inplace=True)

return agg

# load dataset

dataset = read_csv(‘pollution.csv‘, header=0, index_col=0)

values = dataset.values

# integer encode direction

encoder = LabelEncoder()

values[:,4] = encoder.fit_transform(values[:,4])

# ensure all data is float

values = values.astype(‘float32‘)

# normalize features

scaler = MinMaxScaler(feature_range=(0, 1))

scaled = scaler.fit_transform(values)

# frame as supervised learning

reframed = series_to_supervised(scaled, 1, 1)

# drop columns we don‘t want to predict

reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True)

print(reframed.head())

Running the example prints the first 5 rows of the transformed dataset. We can see the 8 input variables (input series) and the 1 output variable (pollution level at the current hour).

1

2

3

4

5

6

7

8

9

10

11

12

13

var1(t-1)  var2(t-1)  var3(t-1)  var4(t-1)  var5(t-1)  var6(t-1)  \

1   0.129779   0.352941   0.245902   0.527273   0.666667   0.002290

2   0.148893   0.367647   0.245902   0.527273   0.666667   0.003811

3   0.159960   0.426471   0.229508   0.545454   0.666667   0.005332

4   0.182093   0.485294   0.229508   0.563637   0.666667   0.008391

5   0.138833   0.485294   0.229508   0.563637   0.666667   0.009912

var7(t-1)  var8(t-1)   var1(t)

1   0.000000        0.0  0.148893

2   0.000000        0.0  0.159960

3   0.000000        0.0  0.182093

4   0.037037        0.0  0.138833

5   0.074074        0.0  0.109658

This data preparation is simple and there is more we could explore. Some ideas you could look at include:

  • One-hot encoding wind speed.
  • Making all series stationary with differencing and seasonal adjustment.
  • Providing more than 1 hour of input time steps.

This last point is perhaps the most important given the use of Backpropagation through time by LSTMs when learning sequence prediction problems.

Define and Fit Model

In this section, we will fit an LSTM on the multivariate input data.

First, we must split the prepared dataset into train and test sets. To speed up the training of the model for this demonstration, we will only fit the model on the first year of data, then evaluate it on the remaining 4 years of data. If you have time, consider exploring the inverted version of this test harness.

The example below splits the dataset into train and test sets, then splits the train and test sets into input and output variables. Finally, the inputs (X) are reshaped into the 3D format expected by LSTMs, namely [samples, timesteps, features].

1

2

3

4

5

6

7

8

9

10

11

12

# split into train and test sets

values = reframed.values

n_train_hours = 365 * 24

train = values[:n_train_hours, :]

test = values[n_train_hours:, :]

# split into input and outputs

train_X, train_y = train[:, :-1], train[:, -1]

test_X, test_y = test[:, :-1], test[:, -1]

# reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

Running this example prints the shape of the train and test input and output sets with about 9K hours of data for training and about 35K hours for testing.

1

(8760, 1, 8) (8760,) (35039, 1, 8) (35039,)

Now we can define and fit our LSTM model.

We will define the LSTM with 50 neurons in the first hidden layer and 1 neuron in the output layer for predicting pollution. The input shape will be 1 time step with 8 features.

We will use the Mean Absolute Error (MAE) loss function and the efficient Adam version of stochastic gradient descent.

The model will be fit for 50 training epochs with a batch size of 72. Remember that the internal state of the LSTM in Keras is reset at the end of each batch, so an internal state that is a function of a number of days may be helpful (try testing this).

Finally, we keep track of both the training and test loss during training by setting the validation_data argument in the fit() function. At the end of the run both the training and test loss are plotted.

1

2

3

4

5

6

7

8

9

10

11

12

# design network

model = Sequential()

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))

model.add(Dense(1))

model.compile(loss=‘mae‘, optimizer=‘adam‘)

# fit network

history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)

# plot history

pyplot.plot(history.history[‘loss‘], label=‘train‘)

pyplot.plot(history.history[‘val_loss‘], label=‘test‘)

pyplot.legend()

pyplot.show()

Evaluate Model

After the model is fit, we can forecast for the entire test dataset.

We combine the forecast with the test dataset and invert the scaling. We also invert scaling on the test dataset with the expected pollution numbers.

With forecasts and actual values in their original scale, we can then calculate an error score for the model. In this case, we calculate the Root Mean Squared Error (RMSE) that gives error in the same units as the variable itself.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

# make a prediction

yhat = model.predict(test_X)

test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))

# invert scaling for forecast

inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

inv_yhat = inv_yhat[:,0]

# invert scaling for actual

test_y = test_y.reshape((len(test_y), 1))

inv_y = concatenate((test_y, test_X[:, 1:]), axis=1)

inv_y = scaler.inverse_transform(inv_y)

inv_y = inv_y[:,0]

# calculate RMSE

rmse = sqrt(mean_squared_error(inv_y, inv_yhat))

print(‘Test RMSE: %.3f‘ % rmse)

Complete Example

The complete example is listed below.

NOTE: This example assumes you have prepared the data correctly, e.g. converted the downloaded “raw.csv” to the prepared “pollution.csv“. See the first part of this tutorial.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

from math import sqrt

from numpy import concatenate

from matplotlib import pyplot

from pandas import read_csv

from pandas import DataFrame

from pandas import concat

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

# convert series to supervised learning

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]

df = DataFrame(data)

cols, names = list(), list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

names += [(‘var%d(t-%d)‘ % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

if i == 0:

names += [(‘var%d(t)‘ % (j+1)) for j in range(n_vars)]

else:

names += [(‘var%d(t+%d)‘ % (j+1, i)) for j in range(n_vars)]

# put it all together

agg = concat(cols, axis=1)

agg.columns = names

# drop rows with NaN values

if dropnan:

agg.dropna(inplace=True)

return agg

# load dataset

dataset = read_csv(‘pollution.csv‘, header=0, index_col=0)

values = dataset.values

# integer encode direction

encoder = LabelEncoder()

values[:,4] = encoder.fit_transform(values[:,4])

# ensure all data is float

values = values.astype(‘float32‘)

# normalize features

scaler = MinMaxScaler(feature_range=(0, 1))

scaled = scaler.fit_transform(values)

# frame as supervised learning

reframed = series_to_supervised(scaled, 1, 1)

# drop columns we don‘t want to predict

reframed.drop(reframed.columns[[9,10,11,12,13,14,15]], axis=1, inplace=True)

print(reframed.head())

# split into train and test sets

values = reframed.values

n_train_hours = 365 * 24

train = values[:n_train_hours, :]

test = values[n_train_hours:, :]

# split into input and outputs

train_X, train_y = train[:, :-1], train[:, -1]

test_X, test_y = test[:, :-1], test[:, -1]

# reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

# design network

model = Sequential()

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))

model.add(Dense(1))

model.compile(loss=‘mae‘, optimizer=‘adam‘)

# fit network

history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)

# plot history

pyplot.plot(history.history[‘loss‘], label=‘train‘)

pyplot.plot(history.history[‘val_loss‘], label=‘test‘)

pyplot.legend()

pyplot.show()

# make a prediction

yhat = model.predict(test_X)

test_X = test_X.reshape((test_X.shape[0], test_X.shape[2]))

# invert scaling for forecast

inv_yhat = concatenate((yhat, test_X[:, 1:]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

inv_yhat = inv_yhat[:,0]

# invert scaling for actual

test_y = test_y.reshape((len(test_y), 1))

inv_y = concatenate((test_y, test_X[:, 1:]), axis=1)

inv_y = scaler.inverse_transform(inv_y)

inv_y = inv_y[:,0]

# calculate RMSE

rmse = sqrt(mean_squared_error(inv_y, inv_yhat))

print(‘Test RMSE: %.3f‘ % rmse)

Running the example first creates a plot showing the train and test loss during training.

Interestingly, we can see that test loss drops below training loss. The model may be overfitting the training data. Measuring and plotting RMSE during training may shed more light on this.

Line Plot of Train and Test Loss from the Multivariate LSTM During Training

The Train and test loss are printed at the end of each training epoch. At the end of the run, the final RMSE of the model on the test dataset is printed.

We can see that the model achieves a respectable RMSE of 26.496, which is lower than an RMSE of 30 found with a persistence model.

1

2

3

4

5

6

7

8

9

10

11

12

...

Epoch 46/50

0s - loss: 0.0143 - val_loss: 0.0133

Epoch 47/50

0s - loss: 0.0143 - val_loss: 0.0133

Epoch 48/50

0s - loss: 0.0144 - val_loss: 0.0133

Epoch 49/50

0s - loss: 0.0143 - val_loss: 0.0133

Epoch 50/50

0s - loss: 0.0144 - val_loss: 0.0133

Test RMSE: 26.496

This model is not tuned. Can you do better?
Let me know your problem framing, model configuration, and RMSE in the comments below.

Update: Train On Multiple Lag Timesteps Example

There have been many requests for advice on how to adapt the above example to train the model on multiple previous time steps.

I had tried this and a myriad of other configurations when writing the original post and decided not to include them because they did not lift model skill.

Nevertheless, I have included this example below as reference template that you could adapt for your own problems.

The changes needed to train the model on multiple previous time steps are quite minimal, as follows:

First, you must frame the problem suitably when calling series_to_supervised(). We will use 3 hours of data as input. Also note, we no longer explictly drop the columns from all of the other fields at ob(t).

1

2

3

4

5

# specify the number of lag hours

n_hours = 3

n_features = 8

# frame as supervised learning

reframed = series_to_supervised(scaled, n_hours, 1)

Next, we need to be more careful in specifying the column for input and output.

We have 3 * 8 + 8 columns in our framed dataset. We will take 3 * 8 or 24 columns as input for the obs of all features across the previous 3 hours. We will take just the pollution variable as output at the following hour, as follows:

1

2

3

4

5

# split into input and outputs

n_obs = n_hours * n_features

train_X, train_y = train[:, :n_obs], train[:, -n_features]

test_X, test_y = test[:, :n_obs], test[:, -n_features]

print(train_X.shape, len(train_X), train_y.shape)

Next, we can reshape our input data correctly to reflect the time steps and features.

1

2

3

# reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[0], n_hours, n_features))

test_X = test_X.reshape((test_X.shape[0], n_hours, n_features))

Fitting the model is the same.

The only other small change is in how to evaluate the model. Specifically, in how we reconstruct the rows with 8 columns suitable for reversing the scaling operation to get the y and yhat back into the original scale so that we can calculate the RMSE.

The gist of the change is that we concatenate the y or yhat column with the last 7 features of the test dataset in order to inverse the scaling, as follows:

1

2

3

4

5

6

7

8

9

# invert scaling for forecast

inv_yhat = concatenate((yhat, test_X[:, -7:]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

inv_yhat = inv_yhat[:,0]

# invert scaling for actual

test_y = test_y.reshape((len(test_y), 1))

inv_y = concatenate((test_y, test_X[:, -7:]), axis=1)

inv_y = scaler.inverse_transform(inv_y)

inv_y = inv_y[:,0]

We can tie all of these modifications to the above example together. The complete example of multvariate time series forecasting with multiple lag inputs is listed below:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

from math import sqrt

from numpy import concatenate

from matplotlib import pyplot

from pandas import read_csv

from pandas import DataFrame

from pandas import concat

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import mean_squared_error

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

# convert series to supervised learning

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]

df = DataFrame(data)

cols, names = list(), list()

# input sequence (t-n, ... t-1)

for i in range(n_in, 0, -1):

cols.append(df.shift(i))

names += [(‘var%d(t-%d)‘ % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)

for i in range(0, n_out):

cols.append(df.shift(-i))

if i == 0:

names += [(‘var%d(t)‘ % (j+1)) for j in range(n_vars)]

else:

names += [(‘var%d(t+%d)‘ % (j+1, i)) for j in range(n_vars)]

# put it all together

agg = concat(cols, axis=1)

agg.columns = names

# drop rows with NaN values

if dropnan:

agg.dropna(inplace=True)

return agg

# load dataset

dataset = read_csv(‘pollution.csv‘, header=0, index_col=0)

values = dataset.values

# integer encode direction

encoder = LabelEncoder()

values[:,4] = encoder.fit_transform(values[:,4])

# ensure all data is float

values = values.astype(‘float32‘)

# normalize features

scaler = MinMaxScaler(feature_range=(0, 1))

scaled = scaler.fit_transform(values)

# specify the number of lag hours

n_hours = 3

n_features = 8

# frame as supervised learning

reframed = series_to_supervised(scaled, n_hours, 1)

print(reframed.shape)

# split into train and test sets

values = reframed.values

n_train_hours = 365 * 24

train = values[:n_train_hours, :]

test = values[n_train_hours:, :]

# split into input and outputs

n_obs = n_hours * n_features

train_X, train_y = train[:, :n_obs], train[:, -n_features]

test_X, test_y = test[:, :n_obs], test[:, -n_features]

print(train_X.shape, len(train_X), train_y.shape)

# reshape input to be 3D [samples, timesteps, features]

train_X = train_X.reshape((train_X.shape[0], n_hours, n_features))

test_X = test_X.reshape((test_X.shape[0], n_hours, n_features))

print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)

# design network

model = Sequential()

model.add(LSTM(50, input_shape=(train_X.shape[1], train_X.shape[2])))

model.add(Dense(1))

model.compile(loss=‘mae‘, optimizer=‘adam‘)

# fit network

history = model.fit(train_X, train_y, epochs=50, batch_size=72, validation_data=(test_X, test_y), verbose=2, shuffle=False)

# plot history

pyplot.plot(history.history[‘loss‘], label=‘train‘)

pyplot.plot(history.history[‘val_loss‘], label=‘test‘)

pyplot.legend()

pyplot.show()

# make a prediction

yhat = model.predict(test_X)

test_X = test_X.reshape((test_X.shape[0], n_hours*n_features))

# invert scaling for forecast

inv_yhat = concatenate((yhat, test_X[:, -7:]), axis=1)

inv_yhat = scaler.inverse_transform(inv_yhat)

inv_yhat = inv_yhat[:,0]

# invert scaling for actual

test_y = test_y.reshape((len(test_y), 1))

inv_y = concatenate((test_y, test_X[:, -7:]), axis=1)

inv_y = scaler.inverse_transform(inv_y)

inv_y = inv_y[:,0]

# calculate RMSE

rmse = sqrt(mean_squared_error(inv_y, inv_yhat))

print(‘Test RMSE: %.3f‘ % rmse)

The model is fit as before in a minute or two.

1

2

3

4

5

6

7

8

9

10

11

12

13

...

Epoch 45/50

1s - loss: 0.0143 - val_loss: 0.0154

Epoch 46/50

1s - loss: 0.0143 - val_loss: 0.0148

Epoch 47/50

1s - loss: 0.0143 - val_loss: 0.0152

Epoch 48/50

1s - loss: 0.0143 - val_loss: 0.0151

Epoch 49/50

1s - loss: 0.0143 - val_loss: 0.0152

Epoch 50/50

1s - loss: 0.0144 - val_loss: 0.0149

A plot of train and test loss over the epochs is plotted.

Plot of Loss on the Train and Test Datasets

Finally, the Test RMSE is printed, not really showing any advantage in skill, at least on this problem.

1

Test RMSE: 27.177

I would add that the LSTM does not appear to be suitable for autoregression type problemsand that you may be better off exploring an MLP with a large window.

I hope this example helps you with your own time series forecasting experiments.

原文地址:https://www.cnblogs.com/luofeel/p/9475388.html

时间: 2024-11-09 02:03:27

[转]Multivariate Time Series Forecasting with LSTMs in Keras的相关文章

An overview of time series forecasting models

An overview of time series forecasting models 2019-10-04 09:47:05 This blog is from: https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb What is this article about? This article provides an overview of the main m

PP: Multi-Horizon Time Series Forecasting with Temporal Attention Learning

Problem: multi-horizon probabilistic forecasting tasks; Propose an end-to-end framework for multi-horizon time series forecasting, with temporal attention mechanisms to capture latent patterns. Introduction: forecasting ----- understanding demands. t

PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval

from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series segment, how to obtain its relevant time series segments in the historical data. Two challenging: 1. it requires a compact representation of the raw tim

机器学习的8篇文章

Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras Time series prediction problems are a difficult type of predictive modeling problem. Unlike regression predictive modeling, time series also adds the complexity of a sequ

survey on Time Series Analysis Lib

(1)I spent my 4th year Computing project on implementing time series forecasting for Java heap usage prediction using ARIMA, Holt Winters etc, so I might be in a good position to advise you on this. Your best option by far is using the R language, yo

Lab 2 MSc: Time Series Prediction with GP

Advanced Aspects of Nature Inspired Search and Optimisation 2019/2020Lab 2 MSc: Time Series Prediction with GPNB! This coursework is only compulsory for MSc students taking the 20cr module.We released a different Lab 2 with an earlier deadline for UG

史上最全量化资源整理

有些国外的平台.社区.博客如果连接无法打开,那说明可能需要“科学”上网 量化交易平台 国内在线量化平台: BigQuant - 你的人工智能量化平台 - 可以无门槛地使用机器学习.人工智能开发量化策略,基于python,提供策略自动生成器 镭矿 - 基于量化回测平台 果仁网 - 回测量化平台 京东量化 - 算法交易和量化回测平台 聚宽 - 量化回测平台 优矿 - 通联量化实验室 Ricequant - 量化交易平台 况客 - 基于R语言量化回测平台 Factors - 数库多因子量化平台 诸葛量

时间序列分析工具箱——timetk

目录 时间序列分析工具箱--timetk timetk 的主要用途 加载包 数据 timetk 教程: PART 1:时间序列机器学习 PART 2:转换 翻译自<Demo Week: Time Series Machine Learning with timetk> 原文链接:www.business-science.io/code-tools/2017/10/24/demo_week_timetk.html 时间序列分析工具箱--timetk timetk 的主要用途 三个主要用途: 时间

SaS学习资源收集

目前手里的电子书(2018-08-15 00:24) SAS Programming ISAS Programming IISAS Programming IIIdon't be a SAS dinosaur Modernize Your SAS ProgramsSAS_Certification_Prep_Guide_-_Base_Programming_for_SAS_9,_4th_EditioneThe Little SAS Book A Primer, Fifth Edition 5th