【深入学习Redis】主从复制(上)

前言

在前面的两篇文章中,分别介绍了Redis的内存模型Redis的持久化

在Redis的持久化中曾提到,Redis高可用的方案包括持久化、主从复制(及读写分离)、哨兵和集群。其中持久化侧重解决的是Redis数据的单机备份问题(从内存到硬盘的备份);而主从复制则侧重解决数据的多机热备。此外,主从复制还可以实现负载均衡和故障恢复。

这篇文章中,将详细介绍Redis主从复制的方方面面,包括:如何使用主从复制、主从复制的原理(重点是全量复制和部分复制、以及心跳机制)、实际应用中需要注意的问题(如数据不一致问题、复制超时问题、复制缓冲区溢出问题)、主从复制相关的配置(重点是repl-timeout、client-output-buffer-limit slave)等。

目录

一、主从复制概述

二、如何使用主从复制

1.    建立复制

2.    实例

3.    断开复制

三、主从复制的实现原理

1.    连接建立阶段

2.    数据同步阶段

3.    命令传播阶段

四、【数据同步阶段】全量复制和部分复制

1.    全量复制

2.    部分复制

3.    psync命令的执行

4.    部分复制演示

五、【命令传播阶段】心跳机制

1.    主->从:PING

2.    从->主:REPLCONF ACK

六、应用中的问题

1.    读写分离及其中的问题

2.    复制超时问题

3.    复制中断问题

4.    各场景下复制的选择及优化技巧

5.    复制相关的配置

6.    单机内存大小限制

7.    info Replication

七、总结

一、主从复制概述

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(master),后者称为从节点(slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用

主从复制的作用主要包括:

  1. 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
  2. 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
  3. 负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
  4. 高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

二、如何使用主从复制

为了更直观的理解主从复制,在介绍其内部原理之前,先说明我们需要如何操作才能开启主从复制。

1. 建立复制

需要注意,主从复制的开启,完全是在从节点发起的;不需要我们在主节点做任何事情。

从节点开启主从复制,有3种方式:

1、配置文件

在从服务器的配置文件中加入:slaveof <masterip> <masterport>

2、启动命令

redis-server启动命令后加入 --slaveof <masterip> <masterport>

3、客户端命令

Redis服务器启动后,直接通过客户端执行命令:slaveof <masterip> <masterport>,则该Redis实例成为从节点。

上述3种方式是等效的,下面以客户端命令的方式为例,看一下当执行了slaveof后,Redis主节点和从节点的变化。

2. 实例

准备工作:启动两个节点

方便起见,实验所使用的主从节点是在一台机器上的不同Redis实例,其中主节点监听6379端口,从节点监听6380端口;从节点监听的端口号可以在配置文件中修改:

启动后可以看到:

两个Redis节点启动后(分别称为6379节点和6380节点),默认都是主节点。

建立复制

此时在6380节点执行slaveof命令,使之变为从节点:

观察效果

下面验证一下,在主从复制建立后,主节点的数据会复制到从节点中。

1、首先在从节点查询一个不存在的key:

2、然后在主节点中增加这个key:

3、此时在从节点中再次查询这个key,会发现主节点的操作已经同步至从节点:

4、然后在主节点删除这个key:

5、此时在从节点中再次查询这个key,会发现主节点的操作已经同步至从节点:

3. 断开复制

通过slaveof <masterip> <masterport>命令建立主从复制关系以后,可以通过slaveof no one断开。需要注意的是,从节点断开复制后,不会删除已有的数据,只是不再接受主节点新的数据变化。

从节点执行slaveof no one后,打印日志如下所示;可以看出断开复制后,从节点又变回为主节点。

主节点打印日志如下:

三、主从复制的实现原理

上面一节中,介绍了如何操作可以建立主从关系;本小节将介绍主从复制的实现原理。

主从复制过程大体可以分为3个阶段:连接建立阶段(即准备阶段)、数据同步阶段、命令传播阶段;下面分别进行介绍。

1. 连接建立阶段

该阶段的主要作用是在主从节点之间建立连接,为数据同步做好准备。

步骤1:保存主节点信息

从节点服务器内部维护了两个字段,即masterhost和masterport字段,用于存储主节点的ip和port信息。

需要注意的是,slaveof是异步命令,从节点完成主节点ip和port的保存后,向发送slaveof命令的客户端直接返回OK,实际的复制操作在这之后才开始进行。

这个过程中,可以看到从节点打印日志如下:

步骤2:建立socket连接

从节点每秒1次调用复制定时函数replicationCron(),如果发现了有主节点可以连接,便会根据主节点的ip和port,创建socket连接。如果连接成功,则:

从节点:为该socket建立一个专门处理复制工作的文件事件处理器,负责后续的复制工作,如接收RDB文件、接收命令传播等。

主节点:接收到从节点的socket连接后(即accept之后),为该socket创建相应的客户端状态,并将从节点看做是连接到主节点的一个客户端,后面的步骤会以从节点向主节点发送命令请求的形式来进行。

这个过程中,从节点打印日志如下:

步骤3:发送ping命令

从节点成为主节点的客户端之后,发送ping命令进行首次请求,目的是:检查socket连接是否可用,以及主节点当前是否能够处理请求。

从节点发送ping命令后,可能出现3种情况:

  1. 返回pong:说明socket连接正常,且主节点当前可以处理请求,复制过程继续。
  2. 超时:一定时间后从节点仍未收到主节点的回复,说明socket连接不可用,则从节点断开socket连接,并重连。
  3. 返回pong以外的结果:如果主节点返回其他结果,如正在处理超时运行的脚本,说明主节点当前无法处理命令,则从节点断开socket连接,并重连。

在主节点返回pong情况下,从节点打印日志如下:

步骤4:身份验证

如果从节点中设置了masterauth选项,则从节点需要向主节点进行身份验证;没有设置该选项,则不需要验证。从节点进行身份验证是通过向主节点发送auth命令进行的,auth命令的参数即为配置文件中的masterauth的值。

如果主节点设置密码的状态,与从节点masterauth的状态一致(一致是指都存在,且密码相同,或者都不存在),则身份验证通过,复制过程继续;如果不一致,则从节点断开socket连接,并重连。

步骤5:发送从节点端口信息

身份验证之后,从节点会向主节点发送其监听的端口号(前述例子中为6380),主节点将该信息保存到该从节点对应的客户端的slave_listening_port字段中;该端口信息除了在主节点中执行info Replication时显示以外,没有其他作用。

2. 数据同步阶段

主从节点之间的连接建立以后,便可以开始进行数据同步,该阶段可以理解为从节点数据的初始化。具体执行的方式是:从节点向主节点发送psync命令(Redis2.8以前是sync命令),开始同步。

数据同步阶段是主从复制最核心的阶段,根据主从节点当前状态的不同,可以分为全量复制和部分复制,下面会有一章专门讲解这两种复制方式以及psync命令的执行过程,这里不再详述。

需要注意的是,在数据同步阶段之前,从节点是主节点的客户端,主节点不是从节点的客户端;而到了这一阶段及以后,主从节点互为客户端。原因在于:在此之前,主节点只需要响应从节点的请求即可,不需要主动发请求,而在数据同步阶段和后面的命令传播阶段,主节点需要主动向从节点发送请求(如推送缓冲区中的写命令),才能完成复制。

3. 命令传播阶段

数据同步阶段完成后,主从节点进入命令传播阶段;在这个阶段主节点将自己执行的写命令发送给从节点,从节点接收命令并执行,从而保证主从节点数据的一致性。

在命令传播阶段,除了发送写命令,主从节点还维持着心跳机制:PING和REPLCONF ACK。由于心跳机制的原理涉及部分复制,因此将在介绍了部分复制的相关内容后单独介绍该心跳机制。

延迟与不一致

需要注意的是,命令传播是异步的过程,即主节点发送写命令后并不会等待从节点的回复;因此实际上主从节点之间很难保持实时的一致性,延迟在所难免。数据不一致的程度,与主从节点之间的网络状况、主节点写命令的执行频率、以及主节点中的repl-disable-tcp-nodelay配置等有关。

repl-disable-tcp-nodelay no:该配置作用于命令传播阶段,控制主节点是否禁止与从节点的TCP_NODELAY;默认no,即不禁止TCP_NODELAY。当设置为yes时,TCP会对包进行合并从而减少带宽,但是发送的频率会降低,从节点数据延迟增加,一致性变差;具体发送频率与Linux内核的配置有关,默认配置为40ms。当设置为no时,TCP会立马将主节点的数据发送给从节点,带宽增加但延迟变小。

一般来说,只有当应用对Redis数据不一致的容忍度较高,且主从节点之间网络状况不好时,才会设置为yes;多数情况使用默认值no。

四、【数据同步阶段】全量复制和部分复制

在Redis2.8以前,从节点向主节点发送sync命令请求同步数据,此时的同步方式是全量复制;在Redis2.8及以后,从节点可以发送psync命令请求同步数据,此时根据主从节点当前状态的不同,同步方式可能是全量复制或部分复制。后文介绍以Redis2.8及以后版本为例。

全量复制:用于初次复制或其他无法进行部分复制的情况,将主节点中的所有数据都发送给从节点,是一个非常重型的操作。

部分复制:用于网络中断等情况后的复制,只将中断期间主节点执行的写命令发送给从节点,与全量复制相比更加高效。需要注意的是,如果网络中断时间过长,导致主节点没有能够完整地保存中断期间执行的写命令,则无法进行部分复制,仍使用全量复制。

1. 全量复制

Redis通过psync命令进行全量复制的过程如下:

  1. 从节点判断无法进行部分复制,向主节点发送全量复制的请求;或从节点发送部分复制的请求,但主节点判断无法进行全量复制;具体判断过程需要在讲述了部分复制原理后再介绍。
  2. 主节点收到全量复制的命令后,执行bgsave,在后台生成RDB文件,并使用一个缓冲区(称为复制缓冲区)记录从现在开始执行的所有写命令
  3. 主节点的bgsave执行完成后,将RDB文件发送给从节点;从节点首先清除自己的旧数据,然后载入接收的RDB文件,将数据库状态更新至主节点执行bgsave时的数据库状态。
  4. 主节点将前述复制缓冲区中的所有写命令发送给从节点,从节点执行这些写命令,将数据库状态更新至主节点的最新状态
  5. 如果从节点开启了AOF,则会触发bgrewriteaof的执行,从而保证AOF文件更新至主节点的最新状态。

下面是执行全量复制时,主从节点打印的日志;可以看出日志内容与上述步骤是完全对应的。

主节点的打印日志如下:

从节点打印日志如下图所示:

其中,有几点需要注意:从节点接收了来自主节点的89260个字节的数据;从节点在载入主节点的数据之前要先将老数据清除;从节点在同步完数据后,调用了bgrewriteaof。

通过全量复制的过程可以看出,全量复制是非常重型的操作:

  1. 主节点通过bgsave命令fork子进程进行RDB持久化,该过程是非常消耗CPU、内存(页表复制)、硬盘IO的;关于bgsave的性能问题,可以参考 深入学习Redis(2):持久化。
  2. 主节点通过网络将RDB文件发送给从节点,对主从节点的带宽都会带来很大的消耗。
  3. 从节点清空老数据、载入新RDB文件的过程是阻塞的,无法响应客户端的命令;如果从节点执行bgrewriteaof,也会带来额外的消耗。

2. 部分复制

由于全量复制在主节点数据量较大时效率太低,因此Redis2.8开始提供部分复制,用于处理网络中断时的数据同步。

部分复制的实现,依赖于三个重要的概念:

1、复制偏移量

主节点和从节点分别维护一个复制偏移量(offset),代表的是主节点向从节点传递的字节数;主节点每次向从节点传播N个字节数据时,主节点的offset增加N;从节点每次收到主节点传来的N个字节数据时,从节点的offset增加N。

offset用于判断主从节点的数据库状态是否一致:如果二者offset相同,则一致;如果offset不同,则不一致,此时可以根据两个offset找出从节点缺少的那部分数据。例如,如果主节点的offset是1000,而从节点的offset是500,那么部分复制就需要将offset为501-1000的数据传递给从节点。而offset为501-1000的数据存储的位置,就是下面要介绍的复制积压缓冲区。

2、复制积压缓冲区

复制积压缓冲区是由主节点维护的、固定长度的、先进先出(FIFO)队列,默认大小1MB;当主节点开始有从节点时创建,其作用是备份主节点最近发送给从节点的数据。注意,无论主节点有一个还是多个从节点,都只需要一个复制积压缓冲区。

在命令传播阶段,主节点除了将写命令发送给从节点,还会发送一份给复制积压缓冲区,作为写命令的备份;除了存储写命令,复制积压缓冲区中还存储了其中的每个字节对应的复制偏移量(offset)。由于复制积压缓冲区定长且是先进先出,所以它保存的是主节点最近执行的写命令;时间较早的写命令会被挤出缓冲区。

由于该缓冲区长度固定且有限,因此可以备份的写命令也有限,当主从节点offset的差距过大超过缓冲区长度时,将无法执行部分复制,只能执行全量复制。反过来说,为了提高网络中断时部分复制执行的概率,可以根据需要增大复制积压缓冲区的大小(通过配置repl-backlog-size);例如如果网络中断的平均时间是60s,而主节点平均每秒产生的写命令(特定协议格式)所占的字节数为100KB,则复制积压缓冲区的平均需求为6MB,保险起见,可以设置为12MB,来保证绝大多数断线情况都可以使用部分复制。

从节点将offset发送给主节点后,主节点根据offset和缓冲区大小决定能否执行部分复制:

  • 如果offset偏移量之后的数据,仍然都在复制积压缓冲区里,则执行部分复制;
  • 如果offset偏移量之后的数据已不在复制积压缓冲区中(数据已被挤出),则执行全量复制。

3、服务器运行ID(runid)

每个Redis节点(无论主从),在启动时都会自动生成一个随机ID(每次启动都不一样),由40个随机的十六进制字符组成;runid用来唯一识别一个Redis节点。通过info Server命令,可以查看节点的runid:

主从节点初次复制时,主节点将自己的runid发送给从节点,从节点将这个runid保存起来;当断线重连时,从节点会将这个runid发送给主节点;主节点根据runid判断能否进行部分复制:

  • 如果从节点保存的runid与主节点现在的runid相同,说明主从节点之前同步过,主节点会继续尝试使用部分复制(到底能不能部分复制还要看offset和复制积压缓冲区的情况);
  • 如果从节点保存的runid与主节点现在的runid不同,说明从节点在断线前同步的Redis节点并不是当前的主节点,只能进行全量复制。

3. psync命令的执行

在了解了复制偏移量、复制积压缓冲区、节点运行id之后,本节将介绍psync命令的参数和返回值,从而说明psync命令执行过程中,主从节点是如何确定使用全量复制还是部分复制的。

psync命令的执行过程可以参见下图(图片来源:《Redis设计与实现》):

1、首先,从节点根据当前状态,决定如何调用psync命令:

  • 如果从节点之前未执行过slaveof或最近执行了slaveof no one,则从节点发送命令为psync ? -1,向主节点请求全量复制;
  • 如果从节点之前执行了slaveof,则发送命令为psync <runid> <offset>,其中runid为上次复制的主节点的runid,offset为上次复制截止时从节点保存的复制偏移量。

2、主节点根据收到的psync命令,及当前服务器状态,决定执行全量复制还是部分复制:

  • 如果主节点版本低于Redis2.8,则返回-ERR回复,此时从节点重新发送sync命令执行全量复制;
  • 如果主节点版本够新,且runid与从节点发送的runid相同,且从节点发送的offset之后的数据在复制积压缓冲区中都存在,则回复+CONTINUE,表示将进行部分复制,从节点等待主节点发送其缺少的数据即可;
  • 如果主节点版本够新,但是runid与从节点发送的runid不同,或从节点发送的offset之后的数据已不在复制积压缓冲区中(在队列中被挤出了),则回复+FULLRESYNC <runid> <offset>,表示要进行全量复制,其中runid表示主节点当前的runid,offset表示主节点当前的offset,从节点保存这两个值,以备使用。

4. 部分复制演示

在下面的演示中,网络中断几分钟后恢复,断开连接的主从节点进行了部分复制;为了便于模拟网络中断,本例中的主从节点在局域网中的两台机器上。

网络中断

网络中断一段时间后,主节点和从节点都会发现失去了与对方的连接(关于主从节点对超时的判断机制,后面会有说明);此后,从节点便开始执行对主节点的重连,由于此时网络还没有恢复,重连失败,从节点会一直尝试重连。

主节点日志如下:

从节点日志如下:

网络恢复

网络恢复后,从节点连接主节点成功,并请求进行部分复制,主节点接收请求后,二者进行部分复制以同步数据。

主节点日志如下:

从节点日志如下:

五、【命令传播阶段】心跳机制

在命令传播阶段,除了发送写命令,主从节点还维持着心跳机制:PING和REPLCONF ACK。心跳机制对于主从复制的超时判断、数据安全等有作用。

1.主->从:PING

每隔指定的时间,主节点会向从节点发送PING命令,这个PING命令的作用,主要是为了让从节点进行超时判断。

PING发送的频率由repl-ping-slave-period参数控制,单位是秒,默认值是10s。

关于该PING命令究竟是由主节点发给从节点,还是相反,有一些争议;因为在Redis的官方文档中,对该参数的注释中说明是从节点向主节点发送PING命令,如下图所示:

但是根据该参数的名称(含有ping-slave),以及代码实现,我认为该PING命令是主节点发给从节点的。相关代码如下:

 

2. 从->主:REPLCONF ACK

在命令传播阶段,从节点会向主节点发送REPLCONF ACK命令,频率是每秒1次;命令格式为:REPLCONF ACK {offset},其中offset指从节点保存的复制偏移量。REPLCONF ACK命令的作用包括:

1、实时监测主从节点网络状态:该命令会被主节点用于复制超时的判断。此外,在主节点中使用info Replication,可以看到其从节点的状态中的lag值,代表的是主节点上次收到该REPLCONF ACK命令的时间间隔,在正常情况下,该值应该是0或1,如下图所示:

2、检测命令丢失:从节点发送了自身的offset,主节点会与自己的offset对比,如果从节点数据缺失(如网络丢包),主节点会推送缺失的数据(这里也会利用复制积压缓冲区)。注意,offset和复制积压缓冲区,不仅可以用于部分复制,也可以用于处理命令丢失等情形;区别在于前者是在断线重连后进行的,而后者是在主从节点没有断线的情况下进行的。

3、辅助保证从节点的数量和延迟:Redis主节点中使用min-slaves-to-write和min-slaves-max-lag参数,来保证主节点在不安全的情况下不会执行写命令;所谓不安全,是指从节点数量太少,或延迟过高。例如min-slaves-to-write和min-slaves-max-lag分别是3和10,含义是如果从节点数量小于3个,或所有从节点的延迟值都大于10s,则主节点拒绝执行写命令。而这里从节点延迟值的获取,就是通过主节点接收到REPLCONF ACK命令的时间来判断的,即前面所说的info Replication中的lag值。

(后半部分移步【深入学习Redis】主从复制(下))

原文地址:https://www.cnblogs.com/jiadp/p/9328071.html

时间: 2024-10-05 11:14:53

【深入学习Redis】主从复制(上)的相关文章

深入学习Redis主从复制

一.主从复制概述 主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器.前者称为主节点(master),后者称为从节点(slave):数据的复制是单向的,只能由主节点到从节点. 默认情况下,每台Redis服务器都是主节点:且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点. 主从复制的作用 主从复制的作用主要包括: 数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式. 故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障

【深入学习Redis】主从复制(下)

(续上文) 六.应用中的问题 1. 读写分离及其中的问题 在主从复制基础上实现的读写分离,可以实现Redis的读负载均衡:由主节点提供写服务,由一个或多个从节点提供读服务(多个从节点既可以提高数据冗余程度,也可以最大化读负载能力):在读负载较大的应用场景下,可以大大提高Redis服务器的并发量.下面介绍在使用Redis读写分离时,需要注意的问题. 1.延迟与不一致问题 前面已经讲到,由于主从复制的命令传播是异步的,延迟与数据的不一致不可避免.如果应用对数据不一致的接受程度程度较低,可能的优化措施

深入学习Redis(3):主从复制

原文:深入学习Redis(3):主从复制 前言 在前面的两篇文章中,分别介绍了Redis的内存模型和Redis的持久化. 在Redis的持久化中曾提到,Redis高可用的方案包括持久化.主从复制(及读写分离).哨兵和集群.其中持久化侧重解决的是Redis数据的单机备份问题(从内存到硬盘的备份):而主从复制则侧重解决数据的多机热备.此外,主从复制还可以实现负载均衡和故障恢复. 这篇文章中,将详细介绍Redis主从复制的方方面面,包括:如何使用主从复制.主从复制的原理(重点是全量复制和部分复制.以及

redis学习三,Redis主从复制和哨兵模式

Redis主从复制 java架构师项目实战,高并发集群分布式,大数据高可用,视频教程 1.Master可以拥有多个slave 2.多个slave可以连接同一个Master外,还可以连接到其他的slave 3.主从复制不会阻塞Master在主从复制时,Master可以处理client请求. 4.提供系统的伸缩性. 主从复制的过程 1.slave与Master建立连接,发送sync同步命令. 也就是说当用户在Master写入一条命令后,他们之间会通过一些算法把数据同步到每一个slave上. 2.Ms

在centos7上学习redis (一)

最近在按照<Redis实战>来学习redis,今天尝试在centos7上安装并测试redis,首先从官网上下载最新源码 wget http://download.redis.io/releases/redis-4.0.9.tar.gz, 然后是解压缩,安装: 1 tar -xzf redis-4.0.9.tar.gz 2 3 cd redis-4.0.9 4 5 make 6 7 cd src && make all 8 9 cd src && make ins

学习Redis从这里开始

本文主要内容 Redis与其他软件的相同之处和不同之处 Redis的用法 使用Python示例代码与Redis进行简单的互动 使用Redis解决实际问题 Redis是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的数据模型.Redis提供了5种不同类型的数 据结构,各式各样的问题都可以很自然地映射到这些数据结构上:Redis的数据结构致力于帮助用户解决问题,而不会像其他数据库那样,要求用户扭曲问题来 适应数据库.除此之外,通过复制.持久化(persistenc

NoSQL初探之人人都爱Redis:(4)Redis主从复制架构初步探索

一.主从复制架构简介 通过前面几篇的介绍中,我们都是在单机上使用Redis进行相关的实践操作,从本篇起,我们将初步探索一下Redis的集群,而集群中最经典的架构便是主从复制架构.那么,我们首先来了解一下神马是主从复制架构? 1.1 源于关系数据库的读写分离 随着网站业务的不断发展,用户量的不断增加,数据量也成倍的增长,数据库的访问量也呈线性地增长.特别是在用户访问高峰期间,并发访问量突然增大,数据库的负载压力也会增大,如果架构方案不够健壮,那么数据库服务器很有可能在高并发访问负载压力下宕机,造成

【转】 NoSQL初探之人人都爱Redis:(4)Redis主从复制架构初步探索

一.主从复制架构简介 通过前面几篇的介绍中,我们都是在单机上使用Redis进行相关的实践操作,从本篇起,我们将初步探索一下Redis的集群,而集群中最经典的架构便是主从复制架构.那么,我们首先来了解一下神马是主从复制架构? 1.1 源于关系数据库的读写分离 随着网站业务的不断发展,用户量的不断增加,数据量也成倍的增长,数据库的访问量也呈线性地增长.特别是在用户访问高峰期间,并发访问量突然增大,数据库的负载压力也会增大,如果架构方案不够健壮,那么数据库服务器很有可能在高并发访问负载压力下宕机,造成

深入学习Redis(1):Redis内存模型

原文:深入学习Redis(1):Redis内存模型 前言 Redis是目前最火爆的内存数据库之一,通过在内存中读写数据,大大提高了读写速度,可以说Redis是实现网站高并发不可或缺的一部分. 我们使用Redis时,会接触Redis的5种对象类型(字符串.哈希.列表.集合.有序集合),丰富的类型是Redis相对于Memcached等的一大优势.在了解Redis的5种对象类型的用法和特点的基础上,进一步了解Redis的内存模型,对Redis的使用有很大帮助,例如: 1.估算Redis内存使用量.目前