大数据学习方向,从入门到精通

推荐一个大数据学习群 119599574晚上20:10都有一节【免费的】大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,你愿意来学习吗

很多初学者在萌生向大数据方向发展的想法之后,不免产生一些疑问,应该怎样入门?应该学习哪些技术?学习路线又是什么?

所有萌生入行的想法与想要学习Java的同学的初衷是一样的。岗位非常火,就业薪资比较高,,前景非常可观。基本都是这个原因而向往大数据,但是对大数据却不甚了解。

如果你想学习,那么首先你需要学会编程,其次你需要掌握数学,统计学的知识,最后融合应用,就可以想在数据方向发展,笼统来说,就是这样的。但是仅仅这样并没有什么帮助。

现在你需要问自己几个问题:

  • 对于计算机/软件,你的兴趣是什么?
  • 是计算机专业,对操作系统、硬件、网络、服务器感兴趣?
  • 是软件专业,对软件开发、编程、写代码感兴趣?
  • 还是数学、统计学专业,对数据和数字特别感兴趣。
  • 你自己的专业又是什么?

如果你是金融专业,你可以学习,因为这结合起来你自己的专业,将让你在只有你专业知识的竞争者之中脱颖而出,毕竟现在AI+已经涉及到金融行业了。

说了这么多,无非就是想告诉你,大数据的三个大的发展方向:

  • 平台搭建/优化/运维/监控;
  • 大数据开发/ 设计/ 架构;
  • 数据分析/挖掘。

请不要问我哪个容易,只能说能挣钱的都不简单。

说一下大数据的四个典型的特征:

  • 数据量大;
  • 数据类型繁多,(结构化、非结构化文本、日志、视频、图片、地理位置等);
  • 商业价值高,但需要在海量数据之上,通过数据分析与机器学习快速的挖掘出来;
  • 处理时效性高,海量数据的处理需求不再局限在离线计算当中。

现如今,为了应对大数据的这几个特点,开源的大数据框架越来越多,越来越强,先列举一些常见的:

  • 文件存储: N、Mesos
  • 日志收集:Flume、Scribe、Logstash、Kibana
  • 消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
  • 查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
  • 分布式协调服务:Zookeeper
  • 集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
  • 数据挖掘、机器学习:Mahout、Spark MLLib
  • 数据同步:Sqoop
  • 任务调度:Oozie

是不是眼花缭乱了,上面的这些内容,别谈精通了,就算全部都会使用的,应该也没几个。咱们接下来就大数据开发/ 设计/ 架构方向来了解一下学习路线。

在接下的学习中,不论遇到什么问题,先试试搜索并自己解决。Google首选,其次百度。

于入门者而言,官方文档永远是首选文档。

第一章:Hadoop

在大数据存储和计算中Hadoop可以算是开山鼻祖,现在大多开源的大数据框架都依赖Hadoop或者与它能很好的兼容。

关于Hadoop,你至少需要搞清楚这些是什么:

  • Hadoop 1.0、Hadoop 2.0
  • MapReduce、HDFS
  • NameNode、DataNode
  • JobTracker、TaskTracker
  • Yarn、ResourceManager、NodeManager

自己学会如何搭建Hadoop,先让它跑起来。建议先使用安装包命令行安装,不要使用管理工具安装。现在都用Hadoop 2.0。

HDFS目录操作命令;上传、下载文件命令;提交运行MapReduce示例程序;打开Hadoop WEB界面,查看Job运行状态,查看Job运行日志。知道Hadoop的系统日志在哪里。

以上完成之后,就应该去了解他们的原理了:

MapReduce:如何分而治之;HDFS:数据到底在哪里,究竟什么才是副本;

Yarn到底是什么,它能干什么;NameNode到底在干些什么;Resource Manager到底在干些什么;

如果有合适的学习网站,视频就去听课,如果没有或者比较喜欢书籍,也可以啃书。当然最好的方法是先去搜索出来这些是干什么的,大概有了概念之后,然后再去听视频。

之后便是自己寻找一个例子:

自己写一个(照抄也行)WordCount程序,

打包并提交到Hadoop运行。你不会Java?Shell、Python都可以,有个东西叫Hadoop Streaming。如果你认真完成了以上几步,恭喜你,你的一只脚已经进来了。

第二章:更高效的WordCount

在这里,一定要学习SQL,它会对你的工作有很大的帮助。

就像是你写(或者抄)的WordCount一共有几行代码?但是你用SQL就非常简单了,例如:

SELECT word,COUNT(1) FROM wordcount GROUP BY word;

这便是SQL的魅力,编程需要几十行,甚至上百行代码,而SQL一行搞定;使用SQL处理分析Hadoop上的数据,方便、高效、易上手、更是趋势。不论是离线计算还是实时计算,越来越多的大数据处理框架都在积极提供SQL接口。

另外就是SQL On Hadoop之Hive于大数据而言一定要学习的。

什么是Hive?

官方解释如下:The Apache Hive data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax。

为什么说Hive是数据仓库工具,而不是数据库工具呢?

有的朋友可能不知道数据仓库,数据仓库是逻辑上的概念,底层使用的是数据库,数据仓库中的数据有这两个特点:最全的历史数据(海量)、相对稳定的;所谓相对稳定,指的是数据仓库不同于业务系统数据库,数据经常会被更新,数据一旦进入数据仓库,很少会被更新和删除,只会被大量查询。而Hive,也是具备这两个特点,因此,Hive适合做海量数据的数据仓库工具,而不是数据库工具。

了解了它的作用之后,就是安装配置Hive的环节,当可以正常进入Hive命令行是,就是安装配置成功了。

了解Hive是怎么工作的

学会Hive的基本命令:

创建、删除表;加载数据到表;下载Hive表的数据;

MapReduce的原理(还是那个经典的题目,一个10G大小的文件,给定1G大小的内存,如何使用Java程序统计出现次数最多的10个单词及次数);

HDFS读写数据的流程;向HDFS中PUT数据;从HDFS中下载数据;

自己会写简单的MapReduce程序,运行出现问题,知道在哪里查看日志;

会写简单的Select、Where、group by等SQL语句;

Hive SQL转换成MapReduce的大致流程;

Hive中常见的语句:创建表、删除表、往表中加载数据、分区、将表中数据下载到本地;

从上面的学习,你已经了解到,HDFS是Hadoop提供的分布式存储框架,它可以用来存储海量数据,MapReduce是Hadoop提供的分布式计算框架,它可以用来统计和分析HDFS上的海量数据,而Hive则是SQL On Hadoop,Hive提供了SQL接口,开发人员只需要编写简单易上手的SQL语句,Hive负责把SQL翻译成MapReduce,提交运行。

此时,你的”大数据平台”是这样的:那么问题来了,海量数据如何到HDFS上呢?

第三章:数据采集

把各个数据源的数据采集到Hadoop上。

3.1 HDFS PUT命令

这个在前面你应该已经使用过了。put命令在实际环境中也比较常用,通常配合shell、python等脚本语言来使用。建议熟练掌握。

3.2 HDFS API

HDFS提供了写数据的API,自己用编程语言将数据写入HDFS,put命令本身也是使用API。

实际环境中一般自己较少编写程序使用API来写数据到HDFS,通常都是使用其他框架封装好的方法。比如:Hive中的INSERT语句,Spark中的saveAsTextfile等。建议了解原理,会写Demo。

3.3 Sqoop

Sqoop是一个主要用于Hadoop/Hive与传统关系型数据库,Oracle、MySQL、SQLServer等之间进行数据交换的开源框架。就像Hive把SQL翻译成MapReduce一样,Sqoop把你指定的参数翻译成MapReduce,提交到Hadoop运行,完成Hadoop与其他数据库之间的数据交换。

自己下载和配置Sqoop(建议先使用Sqoop1,Sqoop2比较复杂)。了解Sqoop常用的配置参数和方法。

使用Sqoop完成从MySQL同步数据到HDFS;使用Sqoop完成从MySQL同步数据到Hive表;如果后续选型确定使用Sqoop作为数据交换工具,那么建议熟练掌握,否则,了解和会用Demo即可。

3.4 Flume

Flume是一个分布式的海量日志采集和传输框架,因为“采集和传输框架”,所以它并不适合关系型数据库的数据采集和传输。Flume可以实时的从网络协议、消息系统、文件系统采集日志,并传输到HDFS上。

因此,如果你的业务有这些数据源的数据,并且需要实时的采集,那么就应该考虑使用Flume。

下载和配置Flume。使用Flume监控一个不断追加数据的文件,并将数据传输到HDFS;Flume的配置和使用较为复杂,如果你没有足够的兴趣和耐心,可以先跳过Flume。

3.5 阿里开源的DataX

之所以介绍这个,是因为我们公司目前使用的Hadoop与关系型数据库数据交换的工具,就是之前基于DataX开发的,非常好用。

可以参考我的博文《异构数据源海量数据交换工具-Taobao DataX 下载和使用》。现在DataX已经是3.0版本,支持很多数据源。你也可以在其之上做二次开发。有兴趣的可以研究和使用一下,对比一下它与Sqoop。

第四章:把Hadoop上的数据搞到别处去

Hive和MapReduce进行分析了。那么接下来的问题是,分析完的结果如何从Hadoop上同步到其他系统和应用中去呢?其实,此处的方法和第三章基本一致的。

HDFS GET命令:把HDFS上的文件GET到本地。需要熟练掌握。

HDFS API:同3.2.

Sqoop:同3.3.使用Sqoop完成将HDFS上的文件同步到MySQL;使用Sqoop完成将Hive表中的数据同步到MySQL。

如果你已经按照流程认真完整的走了一遍,那么你应该已经具备以下技能和知识点:

  • 知道如何把已有的数据采集到HDFS上,包括离线采集和实时采集;
  • 知道sqoop是HDFS和其他数据源之间的数据交换工具;
  • 知道flume可以用作实时的日志采集。

从前面的学习,对于大数据平台,你已经掌握的不少的知识和技能,搭建Hadoop集群,把数据采集到Hadoop上,使用Hive和MapReduce来分析数据,把分析结果同步到其他数据源。

接下来的问题来了,Hive使用的越来越多,你会发现很多不爽的地方,特别是速度慢,大多情况下,明明我的数据量很小,它都要申请资源,启动MapReduce来执行。

第五章:SQL

其实大家都已经发现Hive后台使用MapReduce作为执行引擎,实在是有点慢。因此SQL On Hadoop的框架越来越多,按我的了解,最常用的按照流行度依次为SparkSQL、Impala和Presto.这三种框架基于半内存或者全内存,提供了SQL接口来快速查询分析Hadoop上的数据。

我们目前使用的是SparkSQL,至于为什么用SparkSQL,原因大概有以下吧:使用Spark还做了其他事情,不想引入过多的框架;Impala对内存的需求太大,没有过多资源部署。

5.1 关于Spark和SparkSQL

  • 什么是Spark,什么是SparkSQL。
  • Spark有的核心概念及名词解释。
  • SparkSQL和Spark是什么关系,SparkSQL和Hive是什么关系。
  • SparkSQL为什么比Hive跑的快。

5.2 如何部署和运行SparkSQL

  • Spark有哪些部署模式?
  • 如何在Yarn上运行SparkSQL?

使用SparkSQL查询Hive中的表。Spark不是一门短时间内就能掌握的技术,因此建议在了解了Spark之后,可以先从SparkSQL入手,循序渐进。

关于Spark和SparkSQL,如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

第六章:数据多次利用

请不要被这个名字所诱惑。其实我想说的是数据的一次采集、多次消费。

在实际业务场景下,特别是对于一些监控日志,想即时的从日志中了解一些指标(关于实时计算,后面章节会有介绍),这时候,从HDFS上分析就太慢了,尽管是通过Flume采集的,但Flume也不能间隔很短就往HDFS上滚动文件,这样会导致小文件特别多。

为了满足数据的一次采集、多次消费的需求,这里要说的便是Kafka。

关于Kafka:什么是Kafka?Kafka的核心概念及名词解释。

如何部署和使用Kafka:使用单机部署Kafka,并成功运行自带的生产者和消费者例子。使用Java程序自己编写并运行生产者和消费者程序。Flume和Kafka的集成,使用Flume监控日志,并将日志数据实时发送至Kafka。

如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的。

这时,使用Flume采集的数据,不是直接到HDFS上,而是先到Kafka,Kafka中的数据可以由多个消费者同时消费,其中一个消费者,就是将数据同步到HDFS。

如果你已经认真完整的学习了以上的内容,那么你应该已经具备以下技能和知识点:

  • 为什么Spark比MapReduce快。
  • 使用SparkSQL代替Hive,更快的运行SQL。
  • 使用Kafka完成数据的一次收集,多次消费架构。
  • 自己可以写程序完成Kafka的生产者和消费者。

从前面的学习,你已经掌握了大数据平台中的数据采集、数据存储和计算、数据交换等大部分技能,而这其中的每一步,都需要一个任务(程序)来完成,各个任务之间又存在一定的依赖性,比如,必须等数据采集任务成功完成后,数据计算任务才能开始运行。如果一个任务执行失败,需要给开发运维人员发送告警,同时需要提供完整的日志来方便查错。

第七章:越来越多的分析任务

不仅仅是分析任务,数据采集、数据交换同样是一个个的任务。这些任务中,有的是定时触发,有点则需要依赖其他任务来触发。当平台中有几百上千个任务需要维护和运行时候,仅仅靠crontab远远不够了,这时便需要一个调度监控系统来完成这件事。调度监控系统是整个数据平台的中枢系统,类似于AppMaster,负责分配和监控任务。

7.1 Apache Oozie

  • Oozie是什么?有哪些功能?
  • Oozie可以调度哪些类型的任务(程序)?
  • Oozie可以支持哪些任务触发方式?
  • 安装配置Oozie。

7.2 其他开源的任务调度系统

Azkaban,light-task-scheduler,Zeus,等等。另外,我这边是之前单独开发的任务调度与监控系统,具体请参考《大数据平台任务调度与监控系统》。如果你认真完成了上面的学习和实践,此时,你的”大数据平台”应该是这样的:

第八章:我的数据要实时

在第六章介绍Kafka的时候提到了一些需要实时指标的业务场景,实时基本可以分为绝对实时和准实时,绝对实时的延迟要求一般在毫秒级,准实时的延迟要求一般在秒、分钟级。对于需要绝对实时的业务场景,用的比较多的是Storm,对于其他准实时的业务场景,可以是Storm,也可以是Spark Streaming。当然,如果可以的话,也可以自己写程序来做。

8.1 Storm

  • 什么是Storm?有哪些可能的应用场景?
  • Storm由哪些核心组件构成,各自担任什么角色?
  • Storm的简单安装和部署。
  • 自己编写Demo程序,使用Storm完成实时数据流计算。

8.2 Spark Streaming

  • 什么是Spark Streaming,它和Spark是什么关系?
  • Spark Streaming和Storm比较,各有什么优缺点?
  • 使用Kafka + Spark Streaming,完成实时计算的Demo程序。

至此,你的大数据平台底层架构已经成型了,其中包括了数据采集、数据存储与计算(离线和实时)、数据同步、任务调度与监控这几大模块。接下来是时候考虑如何更好的对外提供数据了。

第九章:数据要对外

通常对外(业务)提供数据访问,大体上包含以下方面。

  • 离线:比如,每天将前一天的数据提供到指定的数据源(DB、FILE、FTP)等;离线数据的提供可以采用Sqoop、DataX等离线数据交换工具。
  • 实时:比如,在线网站的推荐系统,需要实时从数据平台中获取给用户的推荐数据,这种要求延时非常低(50毫秒以内)。根据延时要求和实时数据的查询需要,可能的方案有:HBase、Redis、MongoDB、ElasticSearch等。
  • OLAP分析:OLAP除了要求底层的数据模型比较规范,另外,对查询的响应速度要求也越来越高,可能的方案有:Impala、Presto、SparkSQL、Kylin。如果你的数据模型比较规模,那么Kylin是最好的选择。
  • 即席查询:即席查询的数据比较随意,一般很难建立通用的数据模型,因此可能的方案有:Impala、Presto、SparkSQL。

这么多比较成熟的框架和方案,需要结合自己的业务需求及数据平台技术架构,选择合适的。原则只有一个:越简单越稳定的,就是最好的。

如果你已经掌握了如何很好的对外(业务)提供数据,那么你的“大数据平台”应该是这样的:

第十章:牛逼高大上的机器学习

关于这块,也只能是简单介绍一下了,研究不深入。在业务中,遇到的能用机器学习解决的问题大概这么三类:

  • 分类问题:包括二分类和多分类,二分类就是解决了预测的问题,就像预测一封邮件是否垃圾邮件;多分类解决的是文本的分类;
  • 聚类问题:从用户搜索过的关键词,对用户进行大概的归类。
  • 推荐问题:根据用户的历史浏览和点击行为进行相关推荐。

大多数行业,使用机器学习解决的也就是这几类问题。

入门学习线路,数学基础;机器学习实战,懂Python最好;SparkMlLib提供了一些封装好的算法,以及特征处理、特征选择的方法。

机器学习确实牛逼高大上,也是我学习的目标。那么,可以把机器学习部分也加进你的“大数据平台”了。

准备好接受大数据了吗?开始学习吧,提高技能,提高核心竞争力。也给自己的未来一个机会。

原文地址:https://www.cnblogs.com/dashujudaka/p/9194748.html

时间: 2024-10-11 03:47:25

大数据学习方向,从入门到精通的相关文章

2018大数据学习路线从入门到精通

最近很多人问小编现在学习大数据这么多,他们都是如何学习的呢.很多初学者在萌生向大数据方向发展的想法之后,不免产生一些疑问,应该怎样入门?应该学习哪些技术?学习路线又是什么?今天小编特意为大家整理了一份大数据从入门到精通的学习路线.并且附带学习资料和视频.希望能够帮助到大家.大数据学习资料分享群:119599574 第一阶段:Linux理论 (1)Linux基础:(2)Linux-shell编程:(3)高并发:lvs负载均衡:(4)高可用&反向代理 第二阶段:Hadoop理论 (1)hadoop-

大数据系统学习零基础入门到精通加项目实战2017最新全套视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

大数据学习应该如何入门

一.整体了解数据分析--5小时 新人们被"大数据"."人工智能"."21世纪是数据分析师的时代"等等信息吸引过来,立志成为一名数据分析师,于是问题来了,数据分析到底是干什么的?数据分析都包含什么内容? 市面上有很多讲数据分析内容的书籍,在此我推荐<深入浅出数据分析>,此书对有基础人士可称消遣读物, 但对新人们还是有一定的作用.阅读时可不求甚解,重点了解数据分析的流程.应用场景.以及书中提到的若干数据分析工具,无需纠结分析模型的实现.5

2019大数据学习方向【最新分享】

一.大数据运维之Linux基础打好Linux基础,以便更好地学习Hadoop,hbase,NoSQL,Spark,Storm,docker,openstack等.因为企业中的项目基本上都是使用Linux环境下搭建或部署的. 1)Linux系统概述2)系统安装及相关配置?3)Linux网络基础?4)OpenSSH实现网络安全连接?5)vi文本编辑器 6)用户和用户组管理7)磁盘管理?8)Linux文件和目录管理?9)Linux终端常用命令?10)linux系统监测与维护 二.大数据开发核心技术 -

大数据学习步骤,入门篇

目前大数据行业异常火爆,不少人都对大数据充满了兴趣,其中有大部分人都是之前没有接触过计算机技术的,对编程语言也不太了解,那是不是这部分零基础的朋友就学不了大数据了呢?答案当然是否定的.大数据学习并不是高深莫测的,虽然它并没有多简单,但是通过努力,零基础的朋友也是完全可以掌握大数据的. 推荐一个大数据学习群142974151每天晚上20:10都有一节[免费的]大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享, 零基础学习大数据一般有以下几步:

什么是大数据?大数据学习路线和就业方向

大数据又称巨量资料,就是数据量大.来源广.种类繁多(日志.视频.音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据. 专业的来讲:大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力.洞察力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据的5V特点:Volume(大量).Velocity(高速).Variety(多样).Value(价值密度).Veracity(真实性). 二.学大数据需要什么语言基础? 首先,学习大数据是需要

大数据Hadoop核心知识入门学习注意事项

今天来介绍新手学习hadoop的入门注意事项.这篇文章一来谈谈hadoop核心知识学习. 首先hadoop分为hadoop1.X和hadoop2.X,并且还有hadoop生态系统,那么下面我们以hadoop2.x为例进行详细介绍: Hadoop的核心是mapreduce和hdfs. Mapreduce:mapreduce是很多人都需要迈过去的槛,它比较难以理解,我们有时候即使写出了mapreduce程序,但是还是摸不着头脑.我们都知道mapreduce是一种编程模型,那么它能干什么,对我有什么用

大数据学习入门看什么书?大数据新手怎么入门?

大数据,big data,大数据是指不能用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理.这句话至少传递两种信息:大数据是海量的数据,另外大数据处理无捷径,对分析处理技术提出了更高的要求. 其实简单的来说,大数据就是通过分析和挖掘全量的非抽样的数据辅助决策.大数据可以实现的应用可以概括为两个方向,一个是精准化定制,第二个是预测.比如像通过搜索引擎搜索同样的内容,每个人的结果却是大不相同的.再比如精准营销.百度的推广.淘宝的喜欢推荐,或者你到了一个地方,自动给你推荐周边的消费设施等等.

大数据学习之Hadoop快速入门

1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效.可伸缩的特点.大数据学习资料分享群119599574 Hadoop的核心是YARN,HDFS,Mapreduce,常用模块架构如下 2.HDFS 源自谷歌的GFS论文,发表于2013年10月,HDFS是GFS的克隆版,HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测和