前缀表达式(波兰表达式)、中缀表达式、后缀表达式(逆波兰表达式)
介绍
三种表达式都是四则运算的表达方式,用以四则运算表达式求值,即数学表达式的求解。
前缀表达式
- 前缀表达式是一种没有括号的算术表达式,与中缀表达式不同的是,其将运算符写在前面,操作数写在后面。为纪念其发明者波兰数学家Jan Lukasiewicz,前缀表达式也称为“波兰式”。例如,- 1 + 2 3,它等价于1-(2+3)。
中缀表达式
- 中缀表达式就是一般的算数表达式,操作符以中缀形式出现在操作数之间。
后缀表达式
- 后缀表达式指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则)。
中缀表达式转前缀表达式
例如:对于中缀表达式(3+4)×5-6,其前缀表达式为- × + 3 4 5 6。前后缀表达式与中缀之间的转换关系,不在此赘述,在Seraphjin的博客中,通过二叉树的方式,很好地解释了这一内容。
除了该博客中所说的二叉树法,还可以通过栈方法,来实现二者的转换,具体步骤如下:
- 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
- 从右至左扫描中缀表达式;
- 遇到操作数时,将其压入S2;
- 遇到运算符时,比较其与S1栈顶运算符的优先级:
- 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
- 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
- 否则,将S1栈顶的运算符弹出并压入到S2中,再与S1中新的栈顶运算符相比较;
- 遇到括号时:
- 如果是右括号“)”,则直接压入S1;
- 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
- 重复上述步骤,直到表达式的最左边;
- 将S1中剩余的运算符依次弹出并压入S2;
- 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。
前缀表达式的计算机求解
利用计算器对前缀表达式求解其算数值时,采用从左到右扫描的方法,遇到操作数,则将其入栈,遇到操作符,则从栈中弹出两个操作数,由于前缀操作符位于数字之前,因此,第二个弹出的操作数为被操作数。然后对两个操作数根据操作符做相应的操作。
- 从右至左扫描,将6、5、4、3压入堆栈
- 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈
- 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈
- 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
中缀表达式转后缀表达式
表达式的转换,有二叉树法和栈方法,二叉树法不在此追述,详情见上文链接。
栈方法将中缀表达式转后缀表达式的方法如下所示:
- 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
- 从左至右扫描中缀表达式;
- 遇到操作数时,将其压入S2;
- 遇到运算符时,比较其与S1栈顶运算符的优先级:
- 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
- 否则,若优先级比栈顶运算符的高,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
- 否则,将S1栈顶的运算符弹出并压入到S2中,再与S1中新的栈顶运算符相比较;
- 遇到括号时:
- 如果是左括号“(”,则直接压入S1;
- 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
- 重复上述步骤,直到表达式的最右边;
- 将S1中剩余的运算符依次弹出并压入S2;
- 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不 用逆序)。
后缀表达式在算数逻辑运算中的作用,以及简单计算器的C++实现
原文地址:https://www.cnblogs.com/sgatbl/p/9413106.html
时间: 2024-09-28 20:16:05