HDU 3416 Marriage Match IV(最短路+最大流)

HDU 3416 Marriage Match IV

题目链接

题意:给一个有向图,给定起点终点,问最多多少条点可以重复,边不能重复的最短路

思路:边不能重复,以为着每个边的容量就是1了,最大流问题,那么问题只要能把最短路上的边找出来,跑一下最大流即可,判断一条边是否是最短路上的边,就从起点和终点各做一次dijstra,求出最短路距离后,如果一条边满足d1[u] + d2[v] + w(u, v) == Mindist,那么这条边就是了

代码:

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;

const int MAXNODE = 1005;
const int MAXEDGE = 200005;

typedef int Type;
const Type INF = 0x3f3f3f3f;

struct Edge {
	int u, v;
	Type cap, flow;
	Edge() {}
	Edge(int u, int v, Type cap, Type flow) {
		this->u = u;
		this->v = v;
		this->cap = cap;
		this->flow = flow;
	}
};

struct Dinic {
	int n, m, s, t;
	Edge edges[MAXEDGE];
	int first[MAXNODE];
	int next[MAXEDGE];
	bool vis[MAXNODE];
	Type d[MAXNODE];
	int cur[MAXNODE];
	vector<int> cut;

	void init(int n) {
		this->n = n;
		memset(first, -1, sizeof(first));
		m = 0;
	}
	void add_Edge(int u, int v, Type cap) {
		edges[m] = Edge(u, v, cap, 0);
		next[m] = first[u];
		first[u] = m++;
		edges[m] = Edge(v, u, 0, 0);
		next[m] = first[v];
		first[v] = m++;
	}

	bool bfs() {
		memset(vis, false, sizeof(vis));
		queue<int> Q;
		Q.push(s);
		d[s] = 0;
		vis[s] = true;
		while (!Q.empty()) {
			int u = Q.front(); Q.pop();
			for (int i = first[u]; i != -1; i = next[i]) {
				Edge& e = edges[i];
				if (!vis[e.v] && e.cap > e.flow) {
					vis[e.v] = true;
					d[e.v] = d[u] + 1;
					Q.push(e.v);
				}
			}
		}
		return vis[t];
	}

	Type dfs(int u, Type a) {
		if (u == t || a == 0) return a;
		Type flow = 0, f;
		for (int &i = cur[u]; i != -1; i = next[i]) {
			Edge& e = edges[i];
			if (d[u] + 1 == d[e.v] && (f = dfs(e.v, min(a, e.cap - e.flow))) > 0) {
				e.flow += f;
				edges[i^1].flow -= f;
				flow += f;
				a -= f;
				if (a == 0) break;
			}
		}
		return flow;
	}

	Type Maxflow(int s, int t) {
		this->s = s; this->t = t;
		Type flow = 0;
		while (bfs()) {
			for (int i = 0; i < n; i++)
				cur[i] = first[i];
			flow += dfs(s, INF);
		}
		return flow;
	}

	void MinCut() {
		cut.clear();
		for (int i = 0; i < m; i += 2) {
			if (vis[edges[i].u] && !vis[edges[i].v])
				cut.push_back(i);
		}
	}
} gao;

struct Edge2 {
	int u, v;
	Type dist;
	Edge2() {}
	Edge2(int u, int v, Type dist) {
		this->u = u;
		this->v = v;
		this->dist = dist;
	}

	void read() {
		scanf("%d%d%d", &u, &v, &dist);
	}
};

struct HeapNode {
	Type d;
	int u;
	HeapNode() {}
	HeapNode(Type d, int u) {
		this->d = d;
		this->u = u;
	}
	bool operator < (const HeapNode& c) const {
		return d > c.d;
	}
};

struct Dijkstra {
	int n, m;
	Edge2 edges[MAXEDGE];
	int first[MAXNODE];
	int next[MAXEDGE];
	bool done[MAXNODE];
	Type d[MAXNODE];

	void init(int n) {
		this->n = n;
		memset(first, -1, sizeof(first));
		m = 0;
	}

	void add_Edge(int u, int v, Type dist) {
		edges[m] = Edge2(u, v, dist);
		next[m] = first[u];
		first[u] = m++;
	}

	void dijkstra(int s) {
		priority_queue<HeapNode> Q;
		for (int i = 1; i <= n; i++) d[i] = INF;
		d[s] = 0;
		memset(done, false, sizeof(done));
		Q.push(HeapNode(0, s));
		while (!Q.empty()) {
			HeapNode x = Q.top(); Q.pop();
			int u = x.u;
			if (done[u]) continue;
			done[u] = true;
			for (int i = first[u]; i != -1; i = next[i]) {
				Edge2& e = edges[i];
				if (d[e.v] > d[u] + e.dist) {
					d[e.v] = d[u] + e.dist;
					Q.push(HeapNode(d[e.v], e.v));
				}
			}
		}
	}
} gao2;

const int N = 1005;
const int M = 100005;

int T, n, m, sd[N], td[N], s, t, Min;
Edge2 es[M];

int main() {
	scanf("%d", &T);
	while (T--) {
		scanf("%d%d", &n, &m);
		gao2.init(n);
		for (int i = 0; i < m; i++) {
			es[i].read();
			gao2.add_Edge(es[i].u, es[i].v, es[i].dist);
		}
		scanf("%d%d", &s, &t);
		gao2.dijkstra(s);
		Min = gao2.d[t];
		for (int i = 1; i <= n; i++)
			sd[i] = gao2.d[i];
		gao2.init(n);
		for (int i = 0; i < m; i++)
			gao2.add_Edge(es[i].v, es[i].u, es[i].dist);
		gao2.dijkstra(t);
		for (int i = 1; i <= n; i++)
			td[i] = gao2.d[i];
		gao.init(n + 1);
		for (int i = 0; i < m; i++) {
			if (sd[es[i].u] + td[es[i].v] + es[i].dist == Min)
				gao.add_Edge(es[i].u, es[i].v, 1);
		}
		printf("%d\n", gao.Maxflow(s, t));
	}
	return 0;
}
时间: 2024-10-25 04:31:53

HDU 3416 Marriage Match IV(最短路+最大流)的相关文章

hdu 3416 Marriage Match IV (最短路+最大流)

hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B a

HDU 3416 Marriage Match IV(最短路+网络流之最大流)

题目地址:HDU 3416 这道题WA了一天半...最终才发现是我一直习惯性的将isap的表示上界的变量直接表示成sink+1了...但是在这道题里汇点sink不一定是最后一个点...sad... 这题可以有两种方法做,一种是求两次最短路,d1表示所有点到源点的最短距离,再求一次用d2表示所有点到汇点的最短距离.然后根据公式d1[u]+d2[v]+w==d1[sink]判断是否属于最短路中的一条边. 还有一种是只求一次最短路,直接用d[v]==d[u]+w来判断是否是可以到达源点的最短路,如果可

HDU 3416 Marriage Match IV(spfa+最大流)

题目的大体意思是:给你一些有向边让你求出给出的点s,t之间最短路的条数. 两边spfa从s到t,和从t到s然后求出在最短路上的点建一条容量为1的边,然后求出s到t的最大的流量,就是最短路的数目. PS:代码写的姿势不够优美. Marriage Match IV Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2051    Accept

HDU 3416 Marriage Match IV

Marriage Match IV Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: 3416 64-bit integer IO format: %I64d      Java class name: Main Do not sincere non-interference.Like that show, now starvae also take part in

hdu 3416 Marriage Match IV 【 最短路 最大流 】

求边不可重复的最短路条数 先从起点到终点用一次dijkstra,再从终点到起点用一次dijkstra,来判断一条边是否在最短路上 如果在,就将这条边的两个端点连起来,容量为1 再跑一下dinic(),最大流就是不可重复的最短路条数 还是想不到怎么建图啊------ 每次做网络流的题目--- 诶---该怎么建图啊--- 想了一会儿----啊--不会啊--- 搜一下题解吧--- 啊,原来这样连边啊--- 啊,原来需要---floyd / 并查集 /dijkstra /------ 啊---快,粘一粘

(中等) HDU 3416 Marriage Match IV,SPFA+SAP。

Description Do not sincere non-interference. Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl

HDU - 3416 Marriage Match IV (最大流)

题目大意:有个人要从A城市去B城市,每条路只允许走一次,问能走几次最短路 解题思路:这题的话,难点就是怎么知道是不是最短路了 首先,先求出到B最短路,这也顺便求出了所有点到B的最短距离 接着求出到A的最短路 这样就能得到两个数组了,假设d1[u]代表u节点到A城市的最短路d2[v]代表v节点到城市B的最短距离 如果满足d1[u] + dis[u][v] + d2[v] == d1[v]的话,那么u,v这条路就属于最短路中的一条边了,那样就可以构边了 得将城市拆成两个点,容量为1 #include

hdu3416 Marriage Match IV 最短路+ 最大流

此题的大意:给定一幅有向图,求起点到终点(都是固定的)的不同的最短路有多少条.不同的最短路是说不能有相同的边,顶点可以重复.并且图含有平行边. 看了题以后,就想到暴力,但是暴力往往是不可取的.(暴力的最坏情况下的时间复杂度是O(n^3)).我说的暴力是求一次最短路以后,把最短路上的边全部去掉(权值设为INF). 最短路可以有很多条,但是最短路的值只有一个.根据这个,我们可以判断某条边是否在最短路上. 建图(单向边),求最短路,起点就是输入的起点.枚举每一条边,如果满足dist[i]+Map[i]

hdu 3081 hdu 3277 hdu 3416 Marriage Match II III IV //最大流的灵活运用

3081 题意: n个女孩选择没有与自己吵过架的男孩有连边(自己的朋友也算,并查集处理),2分图,有些边,求有几种完美匹配(每次匹配每个点都不重复匹配) 我是建二分图后,每次增广一单位,(一次完美匹配),再修改起点还有终点的边流量,继续增广,直到达不到完美匹配为止.网上很多是用二分做的,我觉得没必要...(网上传播跟风真严重...很多人都不是真正懂最大流算法的...) 3277 : 再附加一条件,每个女孩可以最多与k个自己不喜欢的男孩.求有几种完美匹配(同上). 我觉得:求出上题答案,直接ans