常系数线性递推的第n项及前n项和 (Fibonacci数列,矩阵)

(一)Fibonacci数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

考虑1×2的矩阵【f[n-2],f[n-1]】。根据fibonacci数列的递推关系,我们希望通过乘以一个2×2的矩阵,得到矩阵【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】

很容易构造出这个2×2矩阵A,即:

所以,有【f[1],f[2]】×A=【f[2],f[3]】

又因为矩阵乘法满足结合律,故有:

【f[1],f[2]】×A n-1=【f[n],f[n+1]】

这个矩阵的第一个元素即为所求。

至于如何快速求出A n-1,相信大家都会,即递归地:n为偶数时,An=(A n/2)2;n为奇数时,An=(A n/2)2*A。

问题(一)解决。

(二)数列f[n]=f[n-1]+f[n-2]+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

仿照前例,考虑1×3的矩阵【f[n-2],f[n-1],1】,希望求得某3×3的矩阵A,使得此1×3的矩阵乘以A得到矩阵:【f[n-1],f[n],1】=【f[n-1],f[n-1]+f[n-2]+1,1】

容易构造出这个3×3的矩阵A,即:

问题(二)解决。

(三)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的第n项的快速求法(不考虑高精度).

解法:

仿照前例,考虑1×4的矩阵【f[n-2],f[n-1],n,1】,希望求得某4×4的矩阵A,使得此1×4的矩阵乘以A得到矩阵:

【f[n-1],f[n],n+1,1】=【f[n-1],f[n-1]+f[n-2]+n+1,n+1,1】

容易构造出这个4×4的矩阵A,即:

问题(三)解决……

(四)数列f[n]=f[n-1]+f[n-2],f[1]=f[2]=1的前n项和s[n]的快速求法(不考虑高精度).

解法:

虽然我们有S[n]=F[n+2]-1,但本文不考虑此方法,我们想要得到更一般的方法。

考虑(一)的矩阵A,容易发现我们要求【f[1],f[2]】×(A+A2+A3+…+AN-1)。很多人使用一种很数学的方法构造一个2r*2r(r是A的阶数,这里为2)的矩阵来计算,这种方法比较麻烦且很慢,这里不再介绍。下面考虑一种新方法。

仿照之前的思路,考虑1×3的矩阵【f[n-2],f[n-1],s[n-2]】,我们希望通过乘以一个3×3的矩阵A,得到1×3的矩阵:

【f[n-1],f[n],s[n-1]】=【f[n-1],f[n-1]+f[n-2],s[n-2]+f[n-1]】

容易得到这个3×3的矩阵是:

然后…………容易发现,这种方法的矩阵规模是(r+1)*(r+1),比之前流行的方法好得多。

(五)数列f[n]=f[n-1]+f[n-2]+n+1,f[1]=f[2]=1的前n项和s[n]的快速求法(不考虑高精度).

解法:

结合(三)(四),容易想到……

考虑1×5的矩阵【f[n-2],f[n-1],s[n-2],n,1】,

我们需要找到一个5×5的矩阵A,使得它乘以A得到如下1×5的矩阵:

【f[n-1],f[n],s[n-1],n+1,1】

=【f[n-1], f[n-1]+f[n-2]+n+1,s[n-2]+f[n-1],n+1,1】

容易构造出A为:

然后……问题解决。

一般地,如果有f[n]=p*f[n-1]+q*f[n-2]+r*n+s

可以构造矩阵A为:

q 0 0 0
1 p 1 0 0
0 0 1 0 0
0 r 0 1 0
0 s 0 1 1

更一般的,对于f[n]=Sigma(a[n-i]*f[n-i])+Poly(n),其中0<i<=某常数c, Poly (n)表示n的多项式,我们依然可以构造类似的矩阵A来解决问题。

设Degree(Poly(n))=d, 并规定Poly(n)=0时,d=-1,此时对应于常系数线性齐次递推关系。则本方法求前n项和的复杂度为:

((c+1)+(d+1))3*logns

时间: 2024-08-23 06:14:54

常系数线性递推的第n项及前n项和 (Fibonacci数列,矩阵)的相关文章

[模板] 常系数线性递推

常系数线性递推 给定向量 \(A_0 = (a_1, a_2, \dotsc, a_k)\), 和向量 \(H = (h_1, h_2, \dotsc, h_k)\), 同时 \[ a_n = \sum_{i=1}^k a_{n-i} h_i \] 求 \(a_n\). 算法 我们只需求出 \(A_n = (a_n, a_{n+1}, \dotsc, a_{n+k-1})\) 即可. 设 \(f(\lambda)\) 表示转移方程的特征多项式, 有 \[ f(\lambda) = \lambda

Codeforces 1106F Lunar New Year and a Recursive Sequence (数学、线性代数、线性递推、数论、BSGS、扩展欧几里得算法)

哎呀大水题..我写了一个多小时..好没救啊.. 数论板子X合一? 注意: 本文中变量名称区分大小写. 题意: 给一个\(n\)阶递推序列\(f_k=\prod^{n}_{i=1} f_{k-i}b_i\mod P\)其中\(P=998244353\), 输入\(b_1,b_2,...,b_n\)以及已知\(f_1,f_2,...,f_{n-1}=1\), 再给定一个数\(m\)和第\(m\)项的值\(f_m\), 求出一个合法的\(f_n\)值使得按照这个值递推出来的序列满足第\(m\)项的值为

杜教BM递推板子

Berlekamp-Massey 算法用于求解常系数线性递推式 #include<bits/stdc++.h> typedef std::vector<int> VI; typedef long long ll; typedef std::pair<int, int> PII; const ll mod = 1000000007; ll powmod(ll a, ll b) { ll res = 1; a %= mod; assert(b >= 0); for(;

ACM学习历程—HDU1041 Computer Transformation(递推 &amp;&amp; 大数)

Description A sequence consisting of one digit, the number 1 is initially written into a computer. At each successive time step, the computer simultaneously tranforms each digit 0 into the sequence 1 0 and each digit 1 into the sequence 0 1. So, afte

十七、斐波那契数列 【递推思想(迭代思想)解决】

 递推思想本身并不跟函数有直接关系(虽然常常写在函数中). 其基本思路为: 为了解决一个"大"问题,根据现实逻辑,如果能够找到同类问题的一个"最小问题"的答案(通常是已知的),并且根据已知算法,又可以因此得到比最小问题"大一级"问题的答案. 而且,依次类推,又可以得到再大一级问题的答案,最终就可以得到"最大那个问题"(即要解决的问题)的答案. 可见,该思想的过程依赖与2个条件: 1,可知同类最小问题的答案: 2,大一级问题

递推专题笔记

递推说白了就是找规律,然后写出他的递推方程,有的还可以写出通项公式,然后准确预测出第n项的值.因为这种规律存在着前因后果的关系,即是说,后一项的结果往往和前一项或前几项有着某种联系.这种联系不仅仅存在于数字之中,世间万物亦是如此. 由于,递推是深入理解动态规划的基础,就我目前的水平,看到动态规划就如看到tiger一般,完全不知所以,所以为了找回在动态规划前的自信,我打算在回家之前,找一个递推专题练练手.现记录如下: 心得: 1. 既然是递推题,那么肯定有递推方程,那么同样有规律可循,既然有规律.

算法--递推策略

本文地址:http://www.cnblogs.com/archimedes/p/4265019.html,转载请注明源地址. 递推法是一种重要的数学方法,在数学的各个领域中都有广泛的运用,也是计算机用于数值计算的一个重要算法.这种算法特点是:一个问题的求解需一系列的计算,在已知条件和所求问题之间总存在着某种相互联系的关系,在计算时,如果可以找到前后过程之间的数量关系(即递推式),那么,从问题出发逐步推到已知条件,此种方法叫逆推.无论顺推还是逆推,其关键是要找到递推式.这种处理问题的方法能使复杂

LeetCode 70 - 爬楼梯 - [递推+滚动优化]

假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2输出: 2解释: 有两种方法可以爬到楼顶.1. 1 阶 + 1 阶2. 2 阶 示例 2: 输入: 3输出: 3解释: 有三种方法可以爬到楼顶.1. 1 阶 + 1 阶 + 1 阶2. 1 阶 + 2 阶3. 2 阶 + 1 阶 设 $f[n]$ 表示跳上 $n$ 级台阶的方案数目,因此很容易得到 $f[n] = f[n-1

递推(一):递推法的基本思想

所谓递推,是指从已知的初始条件出发,依据某种递推关系,逐次推出所要求的各中间结果及最后结果.其中初始条件或是问题本身已经给定,或是通过对问题的分析与化简后确定. 利用递推算法求问题规模为n的解的基本思想是:当n=1时,解或为已知,或能非常方便地求得:通过采用递推法构造算法的递推性质,能从已求得的规模为1.2.….i−1的一系列解,构造出问题规模为i的解.这样,程序可从i=0或i=1出发,重复地由已知至i−1规模的解,通过递推,获得规模为i的解,直至获得规模为n的解. 可用递推算法求解的问题一般有