树与二叉树(一)

定义

树是n(n≥0)个结点的有限集,它或为空树(n=0)。或为非空树

非空树T满足下面条件:

(1) 有且仅有一个称为根的结点;

(2)除根结点以外的其余结点可分为m(m>0)个互补相交的有限集T1,T2,…Tm,当中每个集合本身又是一棵树,而且称为根的子树。

                         空树

                       一般的树

基本术语

根———即根结点(没有前驱)

叶子———即终端结点(没有后继)

森林———指m棵不相交的树的集合

有序树———结点各子树从左至右有序,不能互换

无序树———结点各子树可互换位置。

双亲———即上层的那个结点(直接前驱)

孩子———即下层结点的子树的根(直接后继)

兄弟———同一双亲下的同层结点(孩子之间互称为兄弟)

堂兄弟———即双亲位于同一层的结点(但并不是同一双亲)

祖先———即从根到该结点所经分支的全部结点

子孙———即该结点下层子树种的任一结点

结点———即树的数据元素

结点的度———结点挂接的子树数

结点的层次———从根到该结点的层数(根结点算第一层)

终端结点———即度为0的结点,即叶子

分支结点———即度不为0的结点(也称为内部结点)

树的度———全部结点度中的最大值

树的深度———指全部结点中最大的层数(或高度)


二叉树

二叉树是一种特殊的树结构,普通树若不转化成二叉树,则运算非常难实现

为什么要重点研究二叉树呢?

  • 二叉树的结构最简单,规律性最强
  • 全部的树都能转为唯一相应的二叉树,不失一般性。

定义:

每个节点至多有两个子树。

基本特点:

  • 结点的度小于等于2
  • 有序树(子树有序。不能颠倒)

                         二叉树的五种形态
    

二叉树的性质

性质1 : 一棵非空二叉树的第i层上最多有2^i-1个结点(i≥1)。

性质2 :若规定空树的深度为0,则深度为k的二叉树最多有(2^k)-1个结点

(k≥0)。

性质3: 具有n个结点的全然二叉树的深度k为log2n+1。

性质4 :对于一棵非空二叉树。假设度为0的结点数目为n0,度为2的结点数目为n2。则有n0= n2+1。

性质5 :对于具有n个结点的全然二叉树,假设依照从上到下和从左到右的顺序对全部结点从1開始编号,则对于序号为i的结点,有:

  1. 假设i>1,则序号为i的结点的双亲结点的序号为i/2(“/”表示整除)。假设i=1,则该结点是根结点,无双亲结点。
  2. 假设2i≤n,则该结点的左孩子结点的序号为2i;若2i>n。则该结点无左孩子。
  3. 假设2i+1≤n。则该结点的右孩子结点的序号为2i+1。若2i+1>n,则该结点无右孩子。

满二叉树:一棵深度为k且有2k-1个结点的二叉树。

(意思是树上挂满了结点)

全然二叉树:深度为k的,有n个结点的二叉树,当且仅当其每个结点都与深度为k的满二叉树中编号从1至n的结点一一相应(意思是仅仅有最后一层叶子不满,且全部集中在左边)

                    Unfinished, see the next
时间: 2024-09-30 18:59:00

树与二叉树(一)的相关文章

树、二叉树、森林的转换

树转换为二叉树 (1)加线.在所有兄弟结点之间加一条连线. (2)去线.树中的每个结点,只保留它与第一个孩子结点的连线,删除它与其它孩子结点之间的连线. (3)层次调整.以树的根节点为轴心,将整棵树顺时针旋转一定角度,使之结构层次分明.(注意第一个孩子是结点的左孩子,兄弟转换过来的孩子是结点的右孩子) 森林转换为二叉树 (1)把每棵树转换为二叉树. (2)第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来. 二叉树转换为树 是树转换为二

树、二叉树、遍历二叉树的总结

首先介绍树: 如上图所示就是一棵树,先介绍树的几个关键名词: 节点:A.B.C.D等都叫节点 节点的度:节点有几个分支,就叫节点的度,比如节点B有2个分支,那B的度为2 终端节点(叶子):没有分支的节点,如E.F.G.H 非终端节点:有分支的节点,如A.B.D.C 节点的层次:自上而下排列层次,A为1层,B为2层,D为3层 树的度:哪个节点的度最大,这个最大的度就是树的度,如图树的度为2 树的深度:简而言之,就是树有几层,如图的树的深度为4 我们接触最多的树是二叉树 二叉树:在计算机科学中,二叉

树和二叉树

以下的内容做为学习笔记,复制别人的,感觉总结的比较好: 第5章 树和二叉树 本章中主要介绍下列内容:  1.树的定义和存储结构  2.二叉树的定义.性质.存储结构  3.二叉树的遍历.线索算法  4.树和二叉树的转换  5.哈夫曼树及其应用课时分配:     1.2两个学时,3四个学时,4两个学时, 5两个学时,上机两个学时重点.难点:     二叉树的遍历.线索算法.哈夫曼树及其应用 第一节 树 1.树的定义和基本运算1.1 定义    树是一种常用的非线性结构.我们可以这样定义:树是n(n≥

数据结构学习笔记(树、二叉树)

树(一对多的数据结构) 树(Tree)是n(n>=0)个结点的有限集.n=0时称为空树.在任意一颗非空树种: (1)有且仅有一个特定的称为根(Root)的结点: (2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1.T2........Tn,其中每一个集合本身又是一棵树,并且称为根的子树. 对于树的定义还需要强调两点:1.n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树只能有一个根结点.2.m>0时,子树的个数没有限制,但它们一定是互不相交的. 结点

6-5-树的双亲表示法-树和二叉树-第6章-《数据结构》课本源码-严蔚敏吴伟民版

课本源码部分 第6章  树和二叉树 - 树的双亲表示法 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑        本源码引入的文件  链接? Status.h.Scanf.c.SequenceStack.c    

树和二叉树-第6章-《数据结构题集》习题解析-严蔚敏吴伟民版

习题集解析部分 第6章 树和二叉树 ——<数据结构题集>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑       相关测试数据下载  链接? 数据包       本习题文档的存放目录:数据结构\▼配套习题解析\▼06 树和二叉树  

基本数据结构学习笔记——树与二叉树

1.树的形式化定义: 树(Tree)是由一个或多个结点组成的有限集合T,其中有一个特定的称为根的结点:其余结点可分为m(m≥0)个互不相交的有限集T1,T2,T3 ,…,Tm,每一个集合本身又是一棵树,且称为根的子树. 2.有关树的基本术语: 1.结点(Node):树中的元素,包含数据项及若干指向其子树的分支. 2.结点的度(Degree):结点拥有的子树数. 3.结点的层次:从根结点开始算起,根为第一层. 4.叶子(Leaf):度为零的结点,也称端结点. 5.孩子(Child):结点子树的根称

树、二叉树基础

刚看到堆排序,顺便记录一下关于树的一些基本概念: 前言 前面介绍的栈.队列都是线性结构(linear structure).而树是非线性结构(non-linear structure).因此,树中的元素之间一般不存在类似于线性结构的一对一的关系,更多地表现为多对多的关系.直观地看,它是数据元素(在树中称为节点)按分支关系组织起来的结构.显然,树形结构是比线性结构更复杂的一种数据结构类型. 一.树 树的定义:树是含有n个节点的有穷集合,其中有一个节点比较特殊称为根节点.在图示树时,用一条边连接两个

数据结构与算法系列研究五——树、二叉树、三叉树、平衡排序二叉树AVL

树.二叉树.三叉树.平衡排序二叉树AVL 一.树的定义 树是计算机算法最重要的非线性结构.树中每个数据元素至多有一个直接前驱,但可以有多个直接后继.树是一种以分支关系定义的层次结构.    a.树是n(≥0)结点组成的有限集合.{N.沃恩}     (树是n(n≥1)个结点组成的有限集合.{D.E.Knuth})      在任意一棵非空树中:        ⑴有且仅有一个没有前驱的结点----根(root).        ⑵当n>1时,其余结点有且仅有一个直接前驱.         ⑶所有结

第五章 树和二叉树

上章回顾 单链表的基本操作,包括插入.删除以及查找 双向链表和循环链表的区别 [email protected]:Kevin-Dfg/Data-Structures-and-Algorithm-Analysis-in-C.git 第五章 第五章 树和二叉树 树和二叉树 [email protected]:Kevin-Dfg/Data-Structures-and-Algorithm-Analysis-in-C.git 预习检查 什么是二叉树 树的遍历有哪几种方式 树有哪些应用 [email pr