Linux驱动中completion接口浅析(wait_for_complete例子,很好)【转】

转自:http://blog.csdn.net/batoom/article/details/6298267

completion是一种轻量级的机制,它允许一个线程告诉另一个线程工作已经完成。可以利用下面的宏静态创建completion:
                         DECLARE_COMPLETION(my_completion);

如果运行时创建completion,则必须采用以下方法动态创建和初始化:
                         struct compltion my_completion;
                          init_completion(&my_completion);

completion的相关定义包含在kernel/include/linux/completion.h中:

struct completion {
                                     unsigned int done;
                                     wait_queue_head_t wait;
                         };

#define COMPLETION_INITIALIZER(work) /
                                                           { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) }

#define DECLARE_COMPLETION(work) /
                                                      struct completion work = COMPLETION_INITIALIZER(work)

static inline void init_completion(struct completion *x)
{
          x->done = 0;
          init_waitqueue_head(&x->wait);
}

要等待completion,可进行如下调用:
                    void wait_for_completion(struct completion *c);

触发completion事件,调用:
                   void complete(struct completion *c);    //唤醒一个等待线程
                   void complete_all(struct completion *c);//唤醒所有的等待线程

为说明completion的使用方法,将《Linux设备驱动程序》一书中的complete模块的代码摘抄如下:
/*
* complete.c -- the writers awake the readers
*
* Copyright (C) 2003 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2003 O‘Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files.    The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O‘Reilly & Associates.     No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: complete.c,v 1.2 2004/09/26 07:02:43 gregkh Exp $
*/

#include <linux/module.h>
#include <linux/init.h>

#include <linux/sched.h>   /* current and everything */
#include <linux/kernel.h> /* printk() */
#include <linux/fs.h>      /* everything... */
#include <linux/types.h>   /* size_t */
#include <linux/completion.h>

MODULE_LICENSE("Dual BSD/GPL");

static int complete_major = 253;//指定主设备号

DECLARE_COMPLETION(comp);

ssize_t complete_read (struct file *filp, char __user *buf, size_t count, loff_t *pos)
{
         printk(KERN_DEBUG "process %i (%s) going to sleep/n",
         current->pid, current->comm);
         wait_for_completion(&comp);
         printk(KERN_DEBUG "awoken %i (%s)/n", current->pid, current->comm);
         return 0; /* EOF */
}

ssize_t complete_write (struct file *filp, const char __user *buf, size_t count,
    loff_t *pos)
{
         printk(KERN_DEBUG "process %i (%s) awakening the readers.../n",
         current->pid, current->comm);
         complete(&comp);
         return count; /* succeed, to avoid retrial */
}

struct file_operations complete_fops = {
         .owner = THIS_MODULE,
         .read =    complete_read,
         .write = complete_write,
};

int complete_init(void)
{
         int result;

/*
    * Register your major, and accept a dynamic number
    */
        result = register_chrdev(complete_major, "complete", &complete_fops);
        if (result < 0)
                return result;
        if (complete_major == 0)
                complete_major = result; /* dynamic */
        return 0;
}

void complete_cleanup(void)
{
         unregister_chrdev(complete_major, "complete");
}

module_init(complete_init);
module_exit(complete_cleanup);

该模块定义了一个简单的completion设备:任何试图从该设备中读取的进程都将等待,直到其他设备写入该设备为止。编译此模块的Makefile如下:
obj-m := complete.o
KDIR := /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:
$(MAKE) -C $(KDIR) M=$(PWD) modules
clean:
rm -f *.ko *.o *.mod.c

在linux终端中执行以下命令,编译生成模块,并进行动态加载。
#make
#mknod completion c 253 0
#insmod complete.ko
再打开三个终端,一个用于读进程:
#cat completion
一个用于写进程:
#echo >completion
另一个查看系统日志:
#tail -f /var/log/messages

值得注意的是,当我们使用的complete_all接口时,如果要重复使用一个completion结构,则必须执行 INIT_COMPLETION(struct completion c)来重新初始化它。可以在kernel/include/linux/completion.h中找到这个宏的定义:
          #define INIT_COMPLETION(x) ((x).done = 0)

以下代码对书中原有的代码进行了一番变动,将唤醒接口由原来的complete换成了complete_all,并且为了重复利用completion结构,所有读进程都结束后就重新初始化completion结构,具体代码如下:
#include <linux/module.h>
#include <linux/init.h>

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/completion.h>

MODULE_LICENSE("Dual BSD/GPL");

#undef KERN_DEBUG
#define KERN_DEBUG "<1>"

static int complete_major=253;
static int reader_count = 0;

DECLARE_COMPLETION(comp);

ssize_t complete_read (struct file *filp,char __user *buf,size_t count,loff_t *pos)
{
           printk(KERN_DEBUG "process %i (%s) going to sleep,waiting for writer/n",current->pid,current->comm);
           reader_count++;
           printk(KERN_DEBUG "In read ,before comletion: reader count = %d /n",reader_count);
           wait_for_completion(&comp);
           reader_count--;
           printk(KERN_DEBUG "awoken %s (%i) /n",current->comm,current->pid);
           printk(KERN_DEBUG "In read,after completion : reader count = %d /n",reader_count);

/*如果使用complete_all,则completion结构只能用一次,再次使用它时必须调用此宏进行重新初始化*/
           if(reader_count == 0)
                       INIT_COMPLETION(comp);

return 0;
}

ssize_t complete_write(struct file *filp,const char __user *buf,size_t count,loff_t *pos)
{
           printk(KERN_DEBUG "process %i (%s) awoking the readers.../n",current->pid,current->comm);
           printk(KERN_DEBUG "In write ,before do complete_all : reader count = %d /n",reader_count);

if(reader_count != 0)  
                   complete_all(&comp);

printk(KERN_DEBUG "In write ,after do complete_all : reader count = %d /n",reader_count);

return count;
}

struct file_operations complete_fops={
           .owner = THIS_MODULE,
           .read = complete_read,
           .write = complete_write,
};

int complete_init(void)
{
           int result;

result=register_chrdev(complete_major,"complete",&complete_fops);
           if(result<0)
                    return result;
           if(complete_major==0)
                   complete_major =result;

printk(KERN_DEBUG    "complete driver test init! complete_major=%d/n",complete_major);
           printk(KERN_DEBUG "静态初始化completion/n");

return 0;
}

void complete_exit(void)
{
           unregister_chrdev(complete_major,"complete");
           printk(KERN_DEBUG    "complete driver    is removed/n");
}

module_init(complete_init);
module_exit(complete_exit);

这里测试步骤和上述一样,只不过需要多打开几个终端来执行多个进程同时读操作。

____________

参考资料:
1.Jonathan Corbet等著,魏永明等译.linux设备驱动程序(第三版)
2.Linux Kernel

时间: 2024-10-17 05:36:01

Linux驱动中completion接口浅析(wait_for_complete例子,很好)【转】的相关文章

Linux驱动中的platform总线分析

copy from :https://blog.csdn.net/fml1997/article/details/77622860 概述 从Linux2.6内核起,引入一套新的驱动管理和注册机制:platform_device 和 platform_driver .Linux 中大部分的设备驱动,都可以使用这套机制,设备用 platform_device 表示:驱动用 platform_driver 进行注册. linux_platform_driver 机制和传统的device_driver机

linux驱动中宏__setup(str, fn)

(一). 定义如下: #define __setup(str, fn) \ __setup_param(str, fn, fn, 0) #define __setup_param(str, unique_id, fn, early) \ static char __setup_str_##unique_id[] __initdata __aligned(1) = str; \ static struct obs_kernel_param __setup_##unique_id \ __used

Linux驱动中获取系统时间

最近在做VoIP方面的驱动,总共有16个FXS口和FXO口依次初始化,耗用的时间较多.准备将其改为多线程,首先需要确定哪个环节消耗的时间多,这就需要获取系统时间. #include <linux/time.h> /*头文件*/ struct timeval time_now; unsigned long int time_num;//获取的时间 do_gettimeofday(&time_now); time_num = time_now.tv_sec*1000+time_now.tv

Linux驱动中常用的宏

1.module_i2c_driver(adxl34x_driver)展开为 static int __int adxl34x_driver_init(void) { return i2c_register_driver(&adxl34x_driver); } module_init(adxl34x_driver_init); static void __exit adxl34x_driver_exit(void) { return i2c_del_driver(&adxl34x_driv

Linux操作系统中系统调用接口

进程控制 fork 创建一个新进程 clone 按指定条件创建子进程 execve 运行可执行文件 exit 终止进程 _exit 立即终止当前进程 getdtablesize 进程所能打开的最大文件数 getpgid 获取指定进程组标识号 setpgid 设置指定进程组标志号 getpgrp 获取当前进程组标识号 setpgrp 设置当前进程组标志号 getpid 获取进程标识号 getppid 获取父进程标识号 getpriority 获取调度优先级 setpriority 设置调度优先级

linux驱动面试题整理

资料来自网上,简单整理,答案后续补充...... 1.字符型驱动设备你是怎么创建设备文件的,就是/dev/下面的设备文件,供上层应用程序打开使用的文件? 答:mknod命令结合设备的主设备号和次设备号,可创建一个设备文件. 评:这只是其中一种方式,也叫手动创建设备文件.还有UDEV/MDEV自动创建设备文件的方式,UDEV/MDEV是运行在用户态的程序,可以动态管理设备文件,包括创建和删除设备文件,运行在用户态意味着系统要运行之后.那么在系统启动期间还有devfs创建了设备文件.一共有三种方式可

【转】linux驱动开发的经典书籍

原文网址:http://www.cnblogs.com/xmphoenix/archive/2012/03/27/2420044.html Linux驱动学习的最大困惑在于书籍的缺乏,市面上最常见的书为<linux_device_driver 3rd Edition>,这是一本很经典的书,无奈Linux的东东还是过于庞大,这本侧重于实战的书籍也只能停留在基本的接口介绍上,更深入的东东只能靠我们自己摸索了.但万事总有一个开头,没有对Linux驱动整体框架的把握是很难做一个优秀的驱动开发者的.除了

linux驱动---等待队列、工作队列、Tasklets【转】

转自:https://blog.csdn.net/ezimu/article/details/54851148 概述: 等待队列.工作队列.Tasklet都是linux驱动很重要的API,下面主要从用法上来讲述如何使用API. 应用场景: 等待队列(waitqueue) linux驱动中,阻塞一般就是用等待队列来实现,将进程停止在此处并睡眠下,直到条件满足时,才可通过此处,继续运行.在睡眠等待期间,wake up时,唤起来检查条件,条件满足解除阻塞,不满足继续睡下去. 工作队列(workqueu

转:学习linux驱动经典书籍

Linux驱动学习的最大困惑在于书籍的缺乏,市面上最常见的书为<linux_device_driver 3rd Edition>,这是一本很经典的书,无奈Linux的东东还是过于庞大,这本侧重于实战的书籍也只能停留在基本的接口介绍上,更深入的东东只能靠我们自己摸索了.但万事总有一个开头,没有对Linux驱动整体框架的把握是很难做一个优秀的驱动开发者的.除了这本Jonathan Corbet, Greg Kroah-Hartman, Alessandro Rubini合著的经典大作外,另一本理论