递推-斐波那契数列

描述
菲波那契数列是指这样的数列: 数列的第一个和第二个数都为1,接下来每个数都等于前面2个数之和。
给出一个正整数a,要求菲波那契数列中第a个数是多少。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数a(1 <= a <= 20)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,为菲波那契数列中第a个数的大小
样例输入
4
5
2
19
1
样例输出
5
1
4181
1
//听说这个数列是有公式的,然而渣渣不会,只能慢慢递推代码
#include<cstdio>
#include<iostream>

using namespace std;
int re[23]={0};
int f(int x)
{
	int i,j,k,l;
	re[1]=1;
	re[2]=1;
	for(i=3;i<=23;i++) re[i]=re[i-2]+re[i-1];
	return 0;
}//建表
int main()
{
	f(1);
	int a[25]={0},n(0),i,j,k;
	cin>>n;
	for(i=0;i<n;i++) cin>>a[i];
	for(i=0;i<n;i++) cout<<re[a[i]]<<endl;
	return 0;

}
时间: 2024-10-03 16:34:22

递推-斐波那契数列的相关文章

UVA1646-Edge Case(递推+斐波那契数列)

Problem UVA1646-Edge Case Time Limit: 3000 mSec Problem Description Input For each test case, you get a single line containing one positive integer: n, with 3 ≤ n ≤ 10000.  Output For each test case, a row containing the number of matchings in Cn.  S

树上三角形(斐波那契数列神奇应用)

树上三角形(斐波那契数列神奇应用) Description给定一个大小为 n 的有点权树,需要支持两个操作.0:询问(u,v),能否在 u 到 v 的简单路径上取三个点,使这三个点的点权作为边长可以构成一个三角形.1:修改某个点的点权. Input第一行两个整数 n,q 表示树的点数和操作数.第二行 n 个整数表示 n 个点的初始的点权.接下来 n-1 行,每行两个整数 a,b,表示 a 是 b 的父亲.接下来 q 行,每行三个整数 op,a,b:若 op=0,则表示询问(a,b).若 op=1

十七、斐波那契数列 【递推思想(迭代思想)解决】

 递推思想本身并不跟函数有直接关系(虽然常常写在函数中). 其基本思路为: 为了解决一个"大"问题,根据现实逻辑,如果能够找到同类问题的一个"最小问题"的答案(通常是已知的),并且根据已知算法,又可以因此得到比最小问题"大一级"问题的答案. 而且,依次类推,又可以得到再大一级问题的答案,最终就可以得到"最大那个问题"(即要解决的问题)的答案. 可见,该思想的过程依赖与2个条件: 1,可知同类最小问题的答案: 2,大一级问题

使用递推和递归解决斐波那契数列问题~~~

/** * 使用递推的方式处理斐波那契数列 * @param sum * @param i * @return */ public static int findValue(int n){ if(n==1) { return 1; } if(n==2) { return 2; } int sum=1; int pre=1; for(int i=3;i<=n;i++) { int temp=sum; sum+=pre; pre=temp; } return sum; } /** * 采用递归的方式

Benelux Algorithm Programming Contest 2014 Final ACM-ICPC Asia Training League 暑假第一阶段第二场 E. Excellent Engineers-单点更新、区间最值-线段树 G. Growling Gears I. Interesting Integers-类似斐波那契数列-递推思维题

先写这几道题,比赛的时候有事就只签了个到. E. Excellent Engineers 传送门: 这个题的意思就是如果一个人的r1,r2,r3中的某一个比已存在的人中的小,就把这个人添加到名单中. 因为是3个变量,所以按其中一个变量进行sort排序,然后,剩下的两个变量,一个当位置pos,一个当值val,通过线段树的单点更新和区间最值操作,就可以把名单确定. 代码: 1 //E-线段树 2 #include<iostream> 3 #include<cstdio> 4 #incl

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

《剑指Offer》题目——斐波拉契数列

题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.(n<=39) 题目分析:如果使用简单的递归,很容易造成栈溢出.采用递推的方式即可. 代码: public class Fibonacci { public static int fibonacci(int n){ int res[] = new int[2]; res[0]=1; res[1]=1; int temp = 0; if(n==0) return 0; if(n<=2) return res[

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有

bzoj 3657 斐波那契数列(fib.cpp/pas/c/in/out)

空间 512M  时限2s [题目描述] 有n个大于1的正整数a1,a2,…,an,我们知道斐波那契数列的递推式是f(i)=f(i-1)+f(i-2),现在我们修改这个递推式变为f(i)=f(i-1)+f(i-2)+r(i-1),其中r(x)为a1,a2,…,an中为x的约数的个数.现在要求f(m) mod 19940417的值.注:初值f(1)=1,f(2)=1 输入格式: 第一行两个数n,m. 接下来一行n个正整数a1,a2,…,an. 输出格式: 输出一行仅一个数,f(m) mod 199