转载请注明出处:http://blog.csdn.net/ns_code/article/details/24744177
题目:
Given a sorted (increasing order) array, write an algorithm to create a binary tree with minimal height.
翻译:
给定一个有序数组(递增),写程序构建一棵具有最小高度的二叉树。
思路:
要使二叉树的高度最小,则要尽量使其左右子树的节点数目相当,自然就考虑到将其构造成为二叉排序树,且将有序数组的中间大的数作为根节点,这样得到的二叉树的高度便是最小的。
实现代码:
#include<stdio.h> #include<stdlib.h> typedef struct BTNode { int data; struct BTNode *pLchild; struct BTNode *pRchild; }BTNode, *BTree; /* 根据给定的递增数组递归创建高度最小的二叉树, 因为要修改指向根节点的指针的指向,因此要传入pTree的指针,即BTNode的二级指针 */ void createBTree(BTree *ppTree,int *A,int start,int end) { if(start <= end) { int mid = (start + end)/2; *ppTree = (BTree)malloc(sizeof(BTNode)); if(*ppTree == NULL) { printf("malloc faild"); exit(EXIT_FAILURE); } (*ppTree)->data = A[mid]; (*ppTree)->pLchild = NULL; (*ppTree)->pRchild = NULL; createBTree(&(*ppTree)->pLchild,A,start,mid-1); createBTree(&(*ppTree)->pRchild,A,mid+1,end); } } /* 返回两个整数的最大值 */ int max(int a,int b) { return a>b?a:b; } /* 求二叉树的深度 */ int height(BTree pTree) { if(pTree == NULL) return 0; else return max(height(pTree->pLchild),height(pTree->pRchild)) + 1; } /* 中序遍历的递归实现 */ void in_traverse(BTree pTree) { if(pTree) { if(pTree->pLchild) in_traverse(pTree->pLchild); printf("%d ",pTree->data); if(pTree->pRchild) in_traverse(pTree->pRchild); } } int main() { int A[] = {0,1,2,3,4,5,6,7}; int len = 8; BTree pTree; createBTree(&pTree,A,0,len-1); printf("the height of this tree is %d\n",height(pTree)); printf("中序遍历后的结果为:\n"); in_traverse(pTree); printf("\n"); return 0; }
测试结果:
注:代码开源到Github:https://github.com/mmc-maodun/CareerCup
【CareerCup】Trees and Graphs—Q4.3,布布扣,bubuko.com
时间: 2025-01-01 01:51:01