presto集群安装&整合hive|mysql|jdbc

Presto是一个运行在多台服务器上的分布式系统。 完整安装包括一个coordinator(调度节点)和多个worker。 由客户端提交查询,从Presto命令行CLI提交到coordinator。 coordinator进行解析,分析并执行查询计划,然后分发处理队列到worker中。

目录:

  • 搭建前环境准备
  • 集群计划
  • 连接器
  • 安装步骤
  • 配置文件
  • 运行presto
  • 整合hive测试
  • 整合mysql测试
  • 整合jdbc测试

1.搭建前环境准备

  • CentOS 6.7
  • java8
  • Python3.4.4
  • hadoop2.6.4

2.集群计划

  • hd1(192.168.174.131) :调度节点(coordinator)
  • hd2(192.168.174.132):worker节点
  • hd3(192.168.174.133):worker节点

3.连接器

Presto支持从以下版本的Hadoop中读取Hive数据:支持以下文件类型:Text, SequenceFile, RCFile, ORC

Apache Hadoop 1.x  (hive-hadoop1)

Apache Hadoop 2.x  (hive-hadoop2)

Cloudera CDH 4       (hive-cdh4)

Cloudera CDH 5       (hive-cdh5)

此外,需要有远程的Hive元数据。 不支持本地或嵌入模式。 Presto不使用MapReduce,只需要HDFS

4.单机安装步骤

  • 下载 presto-server-0.100, ( 下载地址:https://repo1.maven.org/maven2/com/facebook/presto/presto-server/0.100/presto-server-0.100.tar.gz)或者:链接:http://pan.baidu.com/s/1qYTvTwg 密码:4xz6
  • 将 presto-server-0.100.tar.gz 上传至linux主机(hd1),解压后的文件目录结构如下(称为安装目录):Presto需要一个用于存储日志、本地元数据等的数据目录。 建议在安装目录的外面创建一个数据目录。这样方便Presto进行升级,如:/presto/data

5.配置文件

  • 在安装目录中创建一个etc目录, 在这个etc目录中放入以下配置文件:

1. config.properties :Presto 服务配置

2. node.properties :环境变量配置,每个节点特定配置

3. jvm.config :Java虚拟机的命令行选项

4. log.properties: 允许你根据不同的日志结构设置不同的日志级别

5. catalog目录 :每个连接者配置(data sources)

  • config.properties

包含了Presto server的所有配置信息。 每个Presto server既是一个coordinator也是一个worker。 但是在大型集群中,处于性能考虑,建议单独用一台机器作为 coordinator,一个coordinator的etc/config.properties应该至少包含以下信息:

coordinator=true
node-scheduler.include-coordinator=false
http-server.http.port=18080
task.max-memory=1GB
discovery-server.enabled=true
discovery.uri=http://192.168.174.131:18080

1. coordinator:指定是否运维Presto实例作为一个coordinator(接收来自客户端的查询情切管理每个查询的执行过程)

2. node-scheduler.include-coordinator:是否允许在coordinator服务中进行调度工作, 对于大型的集群,在一个节点上的Presto server即作为coordinator又作为worke将会降低查询性能。因为如果一个服务器作为worker使用,那么大部分的资源都会被worker占用,那么就不会有足够的资源进行关键任务调度、管理和监控查询执行

3. http-server.http.port:指定HTTP server的端口。Presto 使用 HTTP进行内部和外部的所有通讯

4. task.max-memory=1GB:一个单独的任务使用的最大内存 (一个查询计划的某个执行部分会在一个特定的节点上执行)。 这个配置参数限制的GROUP BY语句中的Group的数目、JOIN关联中的右关联表的大小、ORDER BY语句中的行数和一个窗口函数中处理的行数。 该参数应该根据并发查询的数量和查询的复杂度进行调整。如果该参数设置的太低,很多查询将不能执行;但是如果设置的太高将会导致JVM把内存耗光

5. discovery-server.enabled:Presto 通过Discovery 服务来找到集群中所有的节点。为了能够找到集群中所有的节点,每一个Presto实例都会在启动的时候将自己注册到discovery服务。Presto为了简化部署,并且也不想再增加一个新的服务进程,Presto coordinator 可以运行一个内嵌在coordinator 里面的Discovery 服务。这个内嵌的Discovery 服务和Presto共享HTTP server并且使用同样的端口

6. discovery.uri:Discovery server的URI。由于启用了Presto coordinator内嵌的Discovery 服务,因此这个uri就是Presto coordinator的uri。注意:这个URI一定不能以“/“结尾

  • node.properties

包含针对于每个节点的特定的配置信息。 一个节点就是在一台机器上安装的Presto实例,etc/node.properties配置文件至少包含如下配置信息

node.environment=test
node.id=bigdata_node_worker_hd1
node.data-dir=presto/data
  1. node.environment: 集群名称, 所有在同一个集群中的Presto节点必须拥有相同的集群名称
  2. node.id: 每个Presto节点的唯一标示。每个节点的node.id都必须是唯一的。在Presto进行重启或者升级过程中每个节点的node.id必须保持不变。如果在一个节点上安装多个Presto实例(例如:在同一台机器上安装多个Presto节点),那么每个Presto节点必须拥有唯一的node.id
  3. node.data-dir: 数据存储目录的位置(操作系统上的路径), Presto将会把日期和数据存储在这个目录下
  • jvm.config

包含一系列在启动JVM的时候需要使用的命令行选项。这份配置文件的格式是:一系列的选项,每行配置一个单独的选项。由于这些选项不在shell命令中使用。 因此即使将每个选项通过空格或者其他的分隔符分开,java程序也不会将这些选项分开,而是作为一个命令行选项处理,信息如下:

-server
-Xmx16G
-XX:+UseConcMarkSweepGC
-XX:+ExplicitGCInvokesConcurrent
-XX:+CMSClassUnloadingEnabled
-XX:+AggressiveOpts
-XX:+HeapDumpOnOutOfMemoryError
-XX:OnOutOfMemoryError=kill -9 %p
-XX:ReservedCodeCacheSize=150M
  • log.properties

这个配置文件中允许你根据不同的日志结构设置不同的日志级别。每个logger都有一个名字(通常是使用logger的类的全标示类名). Loggers通过名字中的“.“来表示层级和集成关系,信息如下:

com.facebook.presto=DEBUG

配置日志等级,类似于log4j。四个等级:DEBUG,INFO,WARN,ERROR

Catalog Properties

通过在etc/catalog目录下创建catalog属性文件来完成catalogs的注册。 例如:可以先创建一个etc/catalog/jmx.properties文件,文件中的内容如下,完成在jmxcatalog上挂载一个jmxconnector

connector.name=jmx

在etc/catalog目录下创建hive.properties,信息如下:

connector.name=hive-hadoop2
hive.metastore.uri=thrift://192.169.168.131:9083
hive.config.resources=/root/apps/hadoop/etc/hadoop/core-site.xml,/root/apps/hadoop/etc/hadoop/hdfs-site.xml
hive.allow-drop-table=true

以上,是单机部署presto, 至此已经完成。

6.集群安装步骤

将hd1中的presto-server-0.100拷贝到hd2,hd3上

scp -r /root/apps/presto-server-0.100 [email protected]:/root/apps/
scp -r root/apps/presto-server-0.100 [email protected]:/root/apps/
  • 修改hd2中的配置文件:

config.properties

coordinator=false
http-server.http.port=18080
task.max-memory=1GB
discovery-server.enabled=true
discovery.uri=http://192.168.174.131:18080

node.properties

node.environment=test
node.id=bigdata_node_worker_hd2
node.data-dir=presto/data
  • 修改hd3中的配置文件

config.properties

coordinator=false
http-server.http.port=18080
task.max-memory=1GB
discovery-server.enabled=true
discovery.uri=http://192.168.174.131:18080

node.properties

node.environment=test
node.id=bigdata_node_worker_hd3
node.data-dir=presto/data

到此,presto集群配置完毕。

7.运行presto

在hd1,hd2,hd3的presto-server-0.100/bin目录下依次启动presto:

./launcher start

在Presto可以使用如下命令作为一个后台进程启动:

bin/launcher start

或者在前台运行, 可查看具体的日志

bin/launcher run

停止服务进程命令

bin/laucher stop

查看服务进程命令

bin/laucher status

查看进程: ps -aux|grep PrestoServer  或 jps

也可通过浏览器界面查看:http://192.168.174.131:18080

8.整合hive测试

想要查询连接到hive中查询数据还需要先启动hive的metastore

启动方式:

bin/hive --service metastore  #或者后台启动:
bin/hive --service metastore 2>&1 >> /var/log.log &
#后台启动,关闭shell连接依然存在:
nohup bin/hive --service metastore 2>&1 >> /var/log.log &

如果启动失败,查看hive-site.xml中是否有metastore的如下配置,若没有,加上这段后再启动metasotre.

<property>
  <name>hive.metastore.uris</name>
  <value>thrift://192.168.174.131:9083</value>
 </property>

然后下载 presto-cli-0.100-executable.jar:Presto CLI为用户提供了一个用于查询的可交互终端窗口。CLI是一个 可执行 JAR文件, 这也就意味着你可以像UNIX终端窗口一样来使用CLI ,https://repo1.maven.org/maven2/com/facebook/presto/presto-cli/0.100/presto-cli-0.100-executable.jar文件下载后,重名名为 presto , 使用 chmod +x 命令设置可执行权限,执行命令:

下面命令的ip和端口和config.properties中的一致

./presto --server 192.168.174.131:18080 --catalog hive --schema default --debug

在hive中查一下hive default库中的表, 结果如下图

在hive中查询hive default库中的表,如图:

查询user表信息:

此时界面上也会有对应的记录:

退出命令:quit或者exit

9.整合mysql测试

和hive类似,在hd1的etc/目录下新建文件:mysql.properties文件

connector.name=mysql
connection-url=jdbc:mysql://192.168.174.131:3306
connection-user=root
connection-password=123456

然后将mysql.properties分贝拷贝到hd2和hd3的/etc目录下,重新启动PrestoServer服务。

连接测试:

./presto --server localhost:18080 --catalog mysql --schema test --debug

常用写法:

SHOW SCHEMAS FROM mysql;#查询数据库列表
SHOW TABLES FROM mysql.test;#查询指定数据库下的数据表
SELECT * FROM mysql.test.user;查询指定数据表数据

10.整合jdbc测试

代码连接测试,在pom.xml中引入依赖:

<dependency>
<groupId>com.facebook.presto</groupId>
<artifactId>presto-jdbc</artifactId>
<version>0.100</version>
</dependency>

main方法测试连接:

package com.presto.test;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
 
public class TestPrestoJdbc {
public static void main(String[] args) throws Exception {
Class.forName("com.facebook.presto.jdbc.PrestoDriver");
Connection connection = DriverManager.getConnection(
"jdbc:presto://192.168.174.131:18080/hive/default", "root",
null);
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery("show tables");
while (rs.next()) {
System.out.println(rs.getString(1));
}
rs.close();
connection.close();
 
}
}

运行结果:

对比命令行:

以上就是对presto的集群和搭建的使用,你学会了么

presto集群安装&整合hive|mysql|jdbc

时间: 2024-10-22 05:17:45

presto集群安装&整合hive|mysql|jdbc的相关文章

hadoop-spark集群安装---5.hive和spark-sql

一.准备 上传apache-hive-1.2.1.tar.gz和mysql--connector-java-5.1.6-bin.jar到node01 cd /tools tar -zxvf  apache-hive-1.2.1.tar.gz -C /ren/ cd /ren mv apache-hive-1.2.1  hive-1.2.1 本集群采用mysql作为hive的元数据存储 vi etc/profile export HIVE_HOME=/ren/hive-1.2.1 export P

spark 2.0.0集群安装与hive on spark配置

1. 环境准备: JDK1.8 hive 2.3.4 hadoop 2.7.3 hbase 1.3.3 scala 2.11.12 mysql5.7 2. 下载spark2.0.0 cd /home/worksapce/software wget https://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.7.tgz tar -xzvf spark-2.0.0-bin-hadoop2.7.tgz mv spa

第54课:Hive集群安装和测试

一.Hive集群安装 1,安装好Hadoop,并启动HDFS和YARN. 2,下载hive 1.2.1 http://apache.fayea.com/hive/hive-1.2.1/ apache-hive-1.2.1-bin.tar.gz 上传文件至集群中 3. 安装Hive [email protected]:~# ls apache-hive-1.2.1-bin.tar.gz  core  links-anon.txtaaa  公共的  模板  视频  图片  文档  下载  音乐  桌

hadoop-ha+zookeeper+hbase+hive+sqoop+flume+kafka+spark集群安装

创建3台虚拟机 主机为桌面版 其他为迷你版本 ******************************常用命令.进程名称****************************启动集群命令: start-all.sh启动zookeeper: zkServer.sh start 启动journalnode: hadoop-daemon.sh start journalnode启动namenode: hadoop-daemon.sh --script hdfs start namenode启动z

Mysql上的RAC:Percona XtraDB Cluster负载均衡集群安装部署手册

 Percona XtraDB Cluster安装部署手册 引言 编写目的 编写此文档,供PerconaXtraDB Cluster部署时使用. 预期读者 系统维护人员及实施人员. 编制依据及参考资料 目标 通过阅读该手册,让读者明确PerconaXtraDB Cluster的安装.配置和维护情况,为后续数据库运维工作提供指导. 应用部署方案 环境准备 服务器列表 序号 IP 用途 HOSTNAME 操作系统 1 192.168.0.7 Percona XtraDB Cluster RedHat

mysql集群安装(centos)

永不放弃,一切皆有可能!!! 只为成功找方法,不为失败找借口! mysql集群安装(centos) mysql cluster : 1. 基于NDB Cluster 的分布式数据库系统 2. mysql集群中各服务器节点不共享数据 3. 在mysql cluster中节点指的是进程,区别于其他的集群中节点指的是计算机的情况, 因而在单台计算机上可以有任意多的节点 4. 三种节点: 1)管理节点: 管理cluster内其他节点; 包括启动,停止, 备份,配置等; 在启动其他节点前需要先启动管理节点

MySQL集群安装与配置

MySQL集群安装与配置 文章目录 [隐藏] 一.mysql集群安装 二.节点配置 三.首次启动节点 四.测试服务是否正常 五.安全关闭和重启 MySQL Cluster 是 MySQL 适合于分布式计算环境的高实用.高冗余版本.它采用了NDB Cluster 存储引擎,允许在1个 Cluster 中运行多个MySQL服务器.MySQL Cluster 能够使用多种故障切换和负载平衡选项配置NDB存储引擎,但在 Cluster 级别上的存储引擎上做这个最简单.下面我们简单介绍MySQL Clus

MySQL集群安装、负载均衡及备份恢复

MYSQL集群安装学习笔记 [一]服务器准备(操作系统linux皆可,我用的是RHEL6.4):一个管理节点 10.101.4.32两个数据节点 10.101.4.33 10.101.4.34两个查询节点 10.101.4.36 10.101.4.37 下载最新版本的mysql(我用的是 mysql-cluster-gpl-7.3.7-linux-glibc2.5-x86_64.tar) [二]所有节点配置:1.hosts配置,增加所有节点IP与主机名对应 2.增加mysql用户和组, 并将my

MySQL的Master/Slave集群安装和配置

本文讲述MySQL的Master/Slave集群安装和配置,安装的版本是最新的稳定版本GA 5.6.19. 为了支持有限的HA,我们使用Master/Slave简单的读写分离集群.有限的HA是指当Master不可用时,数据不会丢失,但在Master宕机的情况下是不可写的,必须手工处理故障.如果要支持更高的可用性,可以使用两台Master来做热切换. Master和Slave的MySQL安装是相同的,只是my.cnf的配置不同,需要配置二进制日志文件复制. 没有特殊说明,命名中带#的为root用户