HDU 6065 RXD, tree and sequence (LCA+DP)

题意:给定上一棵树和一个排列,然后问你把这个排列分成m个连续的部分,每个部分的大小的是两两相邻的LCA的最小深度,问你最小是多少。

析:首先这个肯定是DP,然后每个部分其实就是里面最小的那个LCA的深度。很容易知道某个区间的值肯定是 [li, li+1] .. [ri-1, ri]这些区间之间的一个,并且我们还可以知道,举个例子,1 2 3 4  5 6 如果知道分成两部分 其中 2 和 6 是最优的,那么中间的 3 4 5 ,这三个数其实属于哪个区间都无所谓,所以对于第 i 个数只有三种可能。

dp[i[j] 表示前 i 个数分成 j 个区间

第一种:它自己属于单独的区间,dp[i][j] = min{ dp[i-1][j-1] + deep[a[i]] }

第二种:它和前面那个数属于一个区间,dp[i][j] = min{ dp[i-2][j-1] + deep[lca(a[i], a[i-1])] }

第三种:它对任何区间都没有贡献,那么无所谓了 dp[i][j] = min{ dp[i-1][j] }

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
//#define all 1,n,1
#define FOR(i,x,n)  for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;

typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 3e5 + 20;
const int maxm = 100 + 10;
const ULL mod = 10007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
  return r >= 0 && r < n && c >= 0 && c < m;
}

struct Edge{
  int to, next;
};
Edge edge[maxn<<1];
int head[maxn], cnt;

void addEdge(int u, int v){
  edge[cnt].to = v;
  edge[cnt].next = head[u];
  head[u] = cnt++;
}

int a[maxn];
int dp[3][maxn];
int dep[maxn], p[20][maxn];
void dfs(int u, int fa, int d){
  dep[u] = d;
  p[0][u] = fa;
  for(int i = head[u]; ~i; i = edge[i].next){
    int v = edge[i].to;
    if(v == fa)  continue;
    dfs(v, u, d + 1);
  }
}

void init(){
  ms(p, -1);
  dfs(1, -1, 1);
  FOR(k, 0, 19)  for(int v = 1; v <= n; ++v){
    if(p[k][v] < 0)  p[k+1][v] = -1;
    else p[k+1][v] = p[k][p[k][v]];
  }
}

int LCA(int u, int v){
  if(dep[u] > dep[v])  swap(u, v);
  for(int k = 0; k < 20; ++k)
    if(dep[v] - dep[u] >> k & 1)  v = p[k][v];
  if(u == v)  return u;
  for(int k = 19; k >= 0; --k)
    if(p[k][u] != p[k][v]){
      u = p[k][u];
      v = p[k][v];
    }
  return p[0][u];
}

int lca[maxn];

int main(){
  while(scanf("%d %d", &n, &m) == 2){
    for(int i = 1; i <= n; ++i)  scanf("%d", a + i);
    ms(head, -1);  cnt = 0;
    for(int i = 1; i < n; ++i){
      int u, v;
      scanf("%d %d", &u, &v);
      addEdge(u, v);
      addEdge(v, u);
    }
    init();  ms(dp, INF);  lca[1] = dep[a[1]];
    for(int i = 2; i <= n; ++i)  lca[i] = dep[LCA(a[i], a[i-1])];
    dp[0][0] = dp[1][0] = dp[2][0] = 0;
    for(int i = 1; i <= n; ++i){
      int t = min(i, m);
      for(int j = 1; j <= t; ++j){
        dp[i%3][j] = min(dp[(i-1)%3][j-1] + dep[a[i]], dp[(i-1)%3][j]);
        if(i > 1)  dp[i%3][j] = min(dp[i%3][j], dp[(i-2)%3][j-1] + lca[i]);
      }
    }
    printf("%d\n", dp[n%3][m]);
  }
  return 0;
}

  

时间: 2024-10-11 21:31:09

HDU 6065 RXD, tree and sequence (LCA+DP)的相关文章

HDU 6065 RXD, tree and sequence (LCA DP)

RXD, tree and sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 234    Accepted Submission(s): 82 Problem Description RXD has a rooted tree T with size n, the root ID is 1, with the dep

【Tarjan】【LCA】【动态规划】【推导】hdu6065 RXD, tree and sequence

划分出来的每个区间的答案,其实就是连续两个的lca的最小值. 即5 2 3 4 这个区间的答案是min(dep(lca(5,2)),dep(lca(2,3),dep(lca(3,4)))). 于是dp即可,f(i,j)表示前i个数,划分成j段的最优值. 只有三种决策,要么不取,继承f(i-1,j),要么将其自己作为某段的最小值,转移自f(i-1,j-1),要么将其与其前位的lca作为某段的最小值,转移自f(i-2,j-1). 如果用tarjan预处理相邻的lca的话,复杂度是O(n*K). 比s

HDU 6060 RXD and dividing(LCA)

[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6060 [题目大意] 给一个n个节点的树,要求将2-n号节点分成k部分, 然后将每一部分加上节点1,求每个集合最小斯坦纳树的最大权值和. [题解] 我们按照后序遍历染色分组,得到的一定是最优分组, 现在考虑在不同颜色的虚树上求路径权值和, 我们发现每个点增加的权值是深度减去到根的路径上已被覆盖的长度, 这个长度等于与dfs序前继的LCA的深度,因此我们在搜索的同时计算与dfs序前继的LCA即可.

hdu 5379 Mahjong tree(树形dp)

题目链接:hdu 5379 Mahjong tree 树形dp,每个节点最多有2个子节点为一棵节点数大于1的子树的根节点,而且要么后代的节点值都大于,要么都小于本身(所以tson不为0是,要乘2).对于K个单一节点的子节点,种类数即为全排K!.当一个节点没有兄弟节点时,以这个节点为根结点的子树,根可以选择最大或者最小. #pragma comment(linker, "/STACK:102400000,102400000") #include <cstdio> #inclu

HDU 4908 (杭电 BC #3 1002题)BestCoder Sequence(DP)

题目地址:HDU 4908 这个题是从m开始,分别往前DP和往后DP,如果比m大,就比前面+1,反之-1.这样的话,为0的点就可以与m这个数匹配成一个子串,然后左边和右边的相反数的也可以互相匹配成一个子串,然后互相的乘积最后再加上就行了.因为加入最终两边的互相匹配了,那就说明左右两边一定是偶数个,加上m就一定是奇数个,这奇数个的问题就不用担心了. 代码如下: #include <iostream> #include <stdio.h> #include <string.h&g

hdu 4908 BestCoder Sequence【DP】

题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=4908 题目大意:给出一个排列,一个m,求出这个排列的连续子序列中有多少个序列式以m为中位数. 由于是一个排列,不会出现重复的数字,记录一下m的位置index,然后以index为分界线,往左求出s[i](表示从i到index之间有多少大于m),b[i](表示从i到index之间有多少小于m),往右求出s[i](表示从index到i之间有多少大于m),b[i](表示从index到i之间有多少小于m).

hdu 6035 Colorful Tree(树形dp+技巧)

题目链接:hdu 6035 Colorful Tree 题意: 给你一棵树,每个节点有一种颜色,现在让你求所有点对的路径上不同的颜色数量的总和. 题解: 下面是官方题解: 单独考虑每一种颜色,答案就是对于每种颜色至少经过一次这种的路径条数之和.反过来思考只需要求有多少条路径没有经过这种颜色即可.直接做可以采用虚树的思想(不用真正建出来),对每种颜色的点按照 dfs 序列排个序,就能求出这些点把原来的树划分成的块的大小.这个过程实际上可以直接一次 dfs 求出. 这里的所说的单独考虑每种颜色,指的

hdu 1011 Starship Troopers (依赖背包 树形dp)

题目: 链接:点击打开链接 题意: n个房间组成一棵树,你有m个战队,从1号房间开始依次clear每个房间,在每个房间需要花费的战队个数是bugs/20,得到的价值是the possibility of capturing a brain,求最大的价值. 算法: 树形dp,有依赖的背包问题.(依次clear每个房间) 思路: 状态转移dp[i][j]表示根结点为i时(房间i)花费j个战队能够得到的最大价值(捕捉到一个brain最大的可能值).递归求出每个根结点处的最大值,最后dp[1][m]就是

hdu 1693 Eat the Trees (插头dp入门)

Eat the Trees Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2507    Accepted Submission(s): 1225 Problem Description Most of us know that in the game called DotA(Defense of the Ancient), Pudg