题意:给定上一棵树和一个排列,然后问你把这个排列分成m个连续的部分,每个部分的大小的是两两相邻的LCA的最小深度,问你最小是多少。
析:首先这个肯定是DP,然后每个部分其实就是里面最小的那个LCA的深度。很容易知道某个区间的值肯定是 [li, li+1] .. [ri-1, ri]这些区间之间的一个,并且我们还可以知道,举个例子,1 2 3 4 5 6 如果知道分成两部分 其中 2 和 6 是最优的,那么中间的 3 4 5 ,这三个数其实属于哪个区间都无所谓,所以对于第 i 个数只有三种可能。
dp[i[j] 表示前 i 个数分成 j 个区间
第一种:它自己属于单独的区间,dp[i][j] = min{ dp[i-1][j-1] + deep[a[i]] }
第二种:它和前面那个数属于一个区间,dp[i][j] = min{ dp[i-2][j-1] + deep[lca(a[i], a[i-1])] }
第三种:它对任何区间都没有贡献,那么无所谓了 dp[i][j] = min{ dp[i-1][j] }
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #include <list> #include <assert.h> #include <bitset> #define debug() puts("++++"); #define gcd(a, b) __gcd(a, b) #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 #define fi first #define se second #define pb push_back #define sqr(x) ((x)*(x)) #define ms(a,b) memset(a, b, sizeof a) #define sz size() #define pu push_up #define pd push_down #define cl clear() //#define all 1,n,1 #define FOR(i,x,n) for(int i = (x); i < (n); ++i) #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 1e20; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 3e5 + 20; const int maxm = 100 + 10; const ULL mod = 10007; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, -1, 0, 1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline bool is_in(int r, int c) { return r >= 0 && r < n && c >= 0 && c < m; } struct Edge{ int to, next; }; Edge edge[maxn<<1]; int head[maxn], cnt; void addEdge(int u, int v){ edge[cnt].to = v; edge[cnt].next = head[u]; head[u] = cnt++; } int a[maxn]; int dp[3][maxn]; int dep[maxn], p[20][maxn]; void dfs(int u, int fa, int d){ dep[u] = d; p[0][u] = fa; for(int i = head[u]; ~i; i = edge[i].next){ int v = edge[i].to; if(v == fa) continue; dfs(v, u, d + 1); } } void init(){ ms(p, -1); dfs(1, -1, 1); FOR(k, 0, 19) for(int v = 1; v <= n; ++v){ if(p[k][v] < 0) p[k+1][v] = -1; else p[k+1][v] = p[k][p[k][v]]; } } int LCA(int u, int v){ if(dep[u] > dep[v]) swap(u, v); for(int k = 0; k < 20; ++k) if(dep[v] - dep[u] >> k & 1) v = p[k][v]; if(u == v) return u; for(int k = 19; k >= 0; --k) if(p[k][u] != p[k][v]){ u = p[k][u]; v = p[k][v]; } return p[0][u]; } int lca[maxn]; int main(){ while(scanf("%d %d", &n, &m) == 2){ for(int i = 1; i <= n; ++i) scanf("%d", a + i); ms(head, -1); cnt = 0; for(int i = 1; i < n; ++i){ int u, v; scanf("%d %d", &u, &v); addEdge(u, v); addEdge(v, u); } init(); ms(dp, INF); lca[1] = dep[a[1]]; for(int i = 2; i <= n; ++i) lca[i] = dep[LCA(a[i], a[i-1])]; dp[0][0] = dp[1][0] = dp[2][0] = 0; for(int i = 1; i <= n; ++i){ int t = min(i, m); for(int j = 1; j <= t; ++j){ dp[i%3][j] = min(dp[(i-1)%3][j-1] + dep[a[i]], dp[(i-1)%3][j]); if(i > 1) dp[i%3][j] = min(dp[i%3][j], dp[(i-2)%3][j-1] + lca[i]); } } printf("%d\n", dp[n%3][m]); } return 0; }
时间: 2024-10-11 21:31:09