《FPGA全程进阶---实战演练》之搞定阻抗匹配

笔者最近几天在做视频采集板卡时,视频显示端打算采用 USB2.0接口+上位机 显示,其中USB需要做阻抗匹配。通常情况下USB的阻抗值需要做到90Ω±10%。下面就讲解一下关于阻抗匹配的知识,哪里说得不对的,还望大家批评指正。

在高速电路中,如USB、HDMI、DDR、LVDS设计中往往要注意阻抗匹配问题,高频信号在传输线中传播时所遇到的阻力称为特性阻抗,包括容抗,感抗,阻抗。为了保证信号在传输过程中不发生反射现象,信号尽量保持完整,降低传输损耗,要对印刷电路板进行阻抗匹配。阻抗匹配的目的主要在于传输线上所有高频微波信号都能达到负载点,不会有信号反射回源头。其中通常情况下,USB/DDR的阻抗值保持在90Ω±10%。HDMI/LVDS保持在100Ω±10%。

影响阻抗的关键因素如图25.1所示,主要有:线宽(W),线距(S),线厚(T),介质常数(Dk/Er),介质厚度(H),那么阻抗和线宽(W),线距(S),线厚(T),介质常数(Dk/Er)成反比,和介质厚度(H)成正比。

图25.1 阻抗影响因素

图25.2 阻抗相关因素

阻抗匹配的方法:1.凭经验值;2.交给PCB厂商;3.结合SI9000进行系统的理论计算。那么本节主要是讲解关于SI9000的使用。

图25.3所示是不同板厚各参数的设置,此图不是标准,仅此作为讲解用,由图中可见1.2mm厚的板子和1.6mm的板子也就是绝缘层的厚度不一样而已,其他参数保持一致。若是用过Altium的朋友,应该还记得在设置层的时候,有一个core和Prepreg,如图25.4所示,core和prepreg的区别在于,虽都是绝缘材料,但core可以两面均有铜箔走线,prepreg为纯绝缘材料,不走任何铜箔线。

图25.3 四层板不同板厚各参数

图25.4 altium中四层板各参数

图25.5 是SI9000界面的一些介绍。

图25.5 SI9000界面

通常会将电源层和地层作为信号层电流回流路径和阻抗参考层,一般采用地层作为参考层或电流回流路径。如果必须采用电源层作为参考或信号回流的路径,注意不要让高速信号走线耦合噪声到电源平面。

那么下面就结合基于USB视频采集板卡说明一下阻抗的计算以及线宽和间距问题。

图25.6 USB2.0硬件搭建

如上图25.6所示是USB2.0硬件电路图,其中DPLUS和DMINUS布线的好坏直接决定了最终的传输速度。关于USB硬件布线以及相关的设计,读者可以参考Cypress相关文件内容。如图25.7所示。

图25.7 相关参考资料

在PCB面板上,USB的D+(DPLUS)D-(DMINUS)就是两根导线,一般平行放置,影响D+(DPLUS)与D-(DMINUS)差分阻抗的因素和之前提到的一样。

借助电磁波原理中微波传输带的2D模型来计算,单根阻抗计算公式如下:

差分阻抗模型如下图25.8所示。

图25.8 差分阻抗模型

差分阻抗计算公式如下:

了解了上述的原理之后,我们可以直接采用SI9000此软件去计算,不用去记住那些繁琐公式,不过从上述公式中,也可以看出阻抗的影响因素和一开始提到的影响因素是一致的。

笔者设计的四层板的排列方式:top layer(signal layer)---power plane (inner plane)---GND layer ---bottom layer (signal layer),所以笔者在计算阻抗时,电源层和地层均可选择参考平面,上下对称,所以计算top layer(signal layer)---power plane (inner plane)即可,当然也可以计算GND layer ---bottom layer (signal layer)。

打开SI9000软件(软件可以网上下载),先计算单端阻抗,实际的模型中,厂商往往会在顶层涂一层绿油,所以实际模型如下图25.9所示:

图25.9 单端阻抗

笔者设计的单端阻抗相关参数如图25.10所示,计算出来的结果是单端阻抗值69.73,一般情况下,单端阻抗要保留一定的余量。笔者tolerance一项没有设置,这个具体应该要和PCB厂商沟通,所以此参数能够满足我们设计的要求。

图25.10 单端阻抗参数

单端阻抗搞定之后,接下来需要计算差分阻抗,这个参数尽量要保持在90Ω±10%范围内。SI9000选择界面如图25.11所示。

图25.11 差分阻抗

设计好之后需要设置相关参数,如下图25.12所示:

图25.12 差分阻抗相关参数

间距为6mil,线宽为15mil,core层的厚度为12.6mil,计算出来的结果为89.72Ω,满足在90Ω±10%范围内。

计算完上述参数之后,就要开始布线,那么在原理图中需要设置差分对。如图25.13所示。定义方式为在菜单栏中选择 place ---directives ---differential pair即可,还需要注意的是,在命名时需要定义为*_N和*_P的格式,其中N和P部分大小写。

图25.13 差分对的定义

定义完参数之后,需要对差分对的规则进行设置,如图25.14所示,点击rule wizard。

图25.14 规则设置

根据上面的计算,线宽为15mil最好,所以设置线宽为15mil。

图25.15 线宽设置

考虑到PCB布线时,D+(DPLUS)和D-(DMINUS)线的长度小于70mm,以20~30mm较宜,并且D+(DPLUS)和D-(DMINUS)线的长度差应尽量小于2mm,防止信号时滞。所以在图25.16中所示,换算成mil值为80mil。

图25.16 允许长度差范围

图25.17为间距设置,优选6mil间距。

图25.17 间距设置

接下来利用差分对布线功能布线即可。

时间: 2024-10-21 00:22:30

《FPGA全程进阶---实战演练》之搞定阻抗匹配的相关文章

《FPGA全程进阶---实战演练》第十二章 二进制码与格雷码PK

大家在写程序的时候,可能会听闻,什么独热码,什么格雷码,什么二进制码等等,本节意在解释这几种编码之间的区别和优势以及用verilog怎么去实现,下面先介绍这几种编码的区别. 1 基础理论部分 1.1 独热码 独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制. 如,有十六个状态的独热码状态编码应该是:0000000000000001,0000000000000010,0000000000000100,000000

《FPGA全程进阶---实战演练》第一章之如何学习FPGA

对于很多初学者,大部分都是急于求成,熟不知越是急于求成,最终越是学无所成,到头来两手空空,要学好FPGA,必须弄懂FPGA本质的一些内容. 1.FPGA内部结构及基本原理 FPGA是可以编程的,必须通过了解FPGA内部结构才能很好地理解为什么FPGA是可以编程的.学习FPGA不能像学习其他CPU芯片一样,看到Verilog或者VHDL就像看到C语言或者其它软件编程语言一样.一条条的读,一条条的分析.要冲破软件编程的思想. 那么FPGA为什么是可以“编程”的呢?首先来了解一下什么叫“程”.启示“程

《FPGA全程进阶---实战演练》第二章之焊接板子及调试注意事项

1.若是读者第一次做板子,强烈建议画完PCB板后将PCB图打印出来,然后对照你买的芯片将芯片放置对 应的位置,然后查看所有的封装格式适不适合,否则等你做出板子来后再试,为时晚矣.笔者虽然知道要这么 做,但是笔者第一次发给工厂做回来的PCB发现有一个芯片封装画大了,而且那个芯片还是贴片封装的,这让 笔者心痛不已,300多大洋就这么要毁于一旦了. 2.在参考别人的电路时一定要注意,你想用的芯片型号的电路适不适合你参考的电路图,若是完全一致,那么可以直接照抄照搬,若是不一样,这时候要非常注意电路的设计

《FPGA全程进阶----实战演练》第二章之系统搭建

1 系统方案 对于设计一款硬件平台,首先要确定整体框架,确定各个模块所需要的芯片以及电压分配情况.图2.6是笔者曾经设计的硬件平台系统. 图2.6系统框图 对于选定一个系统方案之后,接下来做的要先去查看所选用的芯片的数据手册.那么查看手册一般有几点必须要注意,(1)FPGA的工作电压,确定若FPGA正常工作需要几档电压,好设计电源电路:(2)考虑功耗,这决定着需要多大功率的电源才能驱动芯片正常工作:(3)查看时钟网络的分布,这决定在进行逻辑设计时时钟分配的问题:(4)JTAG下载电路,这一部分是

《FPGA全程进阶---实战演练》第五章 基于74HC595的LED操作

1基础理论部分 1.1分频 分频,是的,这个概念也很重要.分频是指将一单一频率信号的频率降低为原来的1/N,就叫N分频.实现分频的电路或装置称为“分频器”,如把33MHZ的信号2分频得到16.5MHZ的信号,3分频得到11MHZ的信号,10分频得到3.3MHZ的信号. 分频主要是相对于主晶振来说,用不到那么高的频率,开发板一般根据具体需要会加入晶振,一般若是功耗较高可选用50MHz,其他情况可以相对调整,如24MHz等等.那么分频的典型应用,二分频,四分频,八分频,还有任意分频. 对于分频,我们

《FPGA全程进阶---实战演练》第十章 VGA五彩缤纷

1基础理论部分 VGA(video graphics array)即视频图形阵列,是IBM在1987年随PS/2一起推出的使用模拟信号的一种视频传输标准.VGA相比与现在的视频传输接口来说已经过时,不过作为最低标准,基本上制造商都会接入此接口,图11.1是常见的VGA接口. 图11.1 VGA接口 对于VGA15个引脚的相关说明,如下图所示. 图11.2 VGA引脚说明 大家做实验的时候,可能会有一个误区,那就是做实验时直接把实验板的VGA接口接到笔记本电脑上,还兴高采烈的等待着显示图像,殊不知

《FPGA全程进阶---实战演练》第一章之FPGA介绍

1 什么是FPGA FPGA也即是Field Programmable Gate Array的缩写,翻译成中文就是现场可编程门阵列.FPGA是在PAL.GAL.CPLD等可编程器件的基础上发展起来的新型高性能产物,是作为专用集成电路(ASIC)领域中的一种半定制电路出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点.图1.1是Altera Cyclone V芯片. 图1.1 Altera Cyclone芯片 说到这里,不得不提ASIC,即专用集成电路(Application

《FPGA全程进阶---实战演练》第九章之有趣的计数器

本小节我们做一个好玩的事情,就是计数器,还记得在做LED自加实验时我们就曾经提到过关于计数器的相关议题,那么这节我们就来讨论讨论. 探讨一下如下的问题:请用verilog记八个数的写法,分析这个可以更好的理解触发器的工作原理. 1. reg [3:0]cnt; always@(posedge clk or negedge rst_n) begin if(!rst_n) cnt <= 4'd0; else if (cnt < 4'd8) cnt <= cnt + 1'b1; else cn

《FPGA全程进阶---实战演练》第二十一章 电源常用类型:LDO和 DCDC

高速电路中的电源设计 高速电路中的电源设计大概分为两种,一种是集总式架构,一种是分布式架构.集总式架构就是由一个电源输入,然后生成多种所需要的电压.如图1所示.这种架构会增加多个DC/DC模块,这样成本不可控,PCB面积也需要增加,但集总式分布架构可以提高整体电源转换效率. 图1 集总分布架构 分布式架构是先由一个模块生成一个中间电压,然后再去转换成其他单板所需要的电压,如图2所示.第一级输出可以要求有较大的噪声和纹波,第二级电源输出所需要的各种电源,这时必须考虑纹波和噪声问题.但分布式也有一个