Some properties on fBm

Let $0<H<1.$ a real-valued Gaussian process $(B_H(t))_{t\ge 0}$ is called fractional Brownian motion (fBm) if $E(B_H(t))=0$ and

$$E(B_H(t)B_H(s))=\frac{1}{2}(t^{2H}+s^{2H}-|t-s|^{2H}).\quad (*)$$

Fact 1: $B_H$ is self-similar, i.e., $B_H(at)\overset{d}{=}|a|^HB_H(t).$

Proof. For any $a>0$, by (*) we have

$$E(B_H(at)B_H(as))=\frac{1}{2}[(at)^{2H}+(as)^{2H}-(a|t-s|)^{2H}]=E[(a^HB_H(t))(a^HB_H(s))].$$

Since $E(B_H(at))=E(a^HB_H(t))=0$ and the above equality implies that $(B_H(at))$ and $(a^HB_H(t))$ have the same covariance matrix. Hence, $B_H(at)\overset{d}{=}|a|^HB_H(t).$

Fact 2: $B_H(t)$ has staionary increnments, i.e., $B_H(t)-B_H(s)\overset{d}{=}B_H(t-s).$

Proof: the proof is similar to that of Fact 1.

Fact 3: $B_H$ admits a version whose sample paths are amlost surely holder continuous of order strict less than $H$, i.e., for each sample path, for any $\varepsilon>0$, there exists a constant $c$ such that

$$|B_H(t)-B_H(s)|\le c |t-s|^{H-\varepsilon}, s,t>0.$$

Proof. We need the following Kolmogorov’s continuity criterion.

Theorem (Kolmogorov’s continuity criterion): Let $\alpha, \varepsilon, c>0$. If a $d$-dimensional process $(X(t))$ defined on a probability space $(\Omega, \mathcal{F}, P)$ satisfies that: for any $s,t\in[0,1]$

$$E(\|X(t)-X(s)\|^{\alpha})\le c|t-s|^{1+\varepsilon}.$$

Then, there exists a continuous version $X(t)$ whose path are $\gamma$-holder for any $\gamma\in[0,\varepsilon/\alpha),$ i.e.,

$$\|X(t)-X(s)\|\le c_0 |t-s|^{\gamma}.$$

By Facts 1 and Fact 2,  for any $p>0$

$$E(|B_H(t)-B_H(s)|^p)=|t-s|^{pH}E(|B_H(1)|^p):=c|t-s|^{1+(pH-1)}.$$

Then, by Kolmogorov’s continuity criterion, put $\gamma=(pH-1)/p$ and letting $p\to \infty$ we get the desired result.

时间: 2024-10-22 09:35:07

Some properties on fBm的相关文章

springboot的application.properties与.yml的区别

现在我们的application.properties文件内容是: [plain] view plain copy server.port=8090 server.session-timeout=30 server.context-path= server.tomcat.max-threads=0 server.tomcat.uri-encoding=UTF-8 spring.datasource.url = jdbc:mysql://localhost:3306/newbirds spring

Properties

import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.util.Map; import java.util.Map.Entry; import java.uti

Spring用代码来读取properties文件

我们都知道,Spring可以@Value的方式读取properties中的值,只需要在配置文件中配置org.springframework.beans.factory.config.PropertyPlaceholderConfigurer <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

Strong local nondeterminism for fBm

Let $B^\alpha$ be an $(N,1)$-fractional Brownian motion with index $\alpha\in(0,1).$ Pitt (Local times for Gaussian vector fields, Indiana Univ. Math. J. 1978) proved that $B^\alpha$ satisfies the following Strong local nondeterminism: there exists a

给你的JAVA程序配置参数(Properties的使用)

我们在写JAVA程序时,很多时候运行程序的参数是需要动态改变的 测试时一系列参数,运行时一系列参数 又或者数据库地址也需要配一套参数,以方便今后的动态部署 这些变量的初始化,我们在写小DEMO时完全可以写死在JAVA文件中 但程序需要发布或者局部部署时,这些参数就需要脱离程序代码了 我们有多种存放参数的方式,比如数据库.XML文件又或者直接是txt文件 现在介绍一种使用JAVA,简单方便的参数读取方式 .properties文件,我们并不陌生,很多优秀的框架中就能看到它的存在,比如Hiberna

java 通过 Properties 读取数据库配置 .properties 文件的使用。

system.properties user=root password=root jdbcUrl=jdbc:mysql://127.0.0.1:3306/test?useUnicode=true&characterEncoding=UTF-8; driverClass=com.mysql.jdbc.Driver 调用方法: public void getProperties(){ Properties prop = new Properties(); try { prop.load(new B

properties文件路径的读取

System.out.println(System.getProperty("user.dir"));  //这个是去工程的绝对路径的  System.out.println(Thread.currentThread().getContextClassLoader().getResource(""));//这个是去当前classpath的uri的!  new Properties().load(new FileInputStream("test.prope

spring 读取properties的两种方法

一:直接使用context命名空间 如: <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:websocket="http

Eclipse的properties插件

分享一个不错的编写properties文件的Eclipse插件(plugin),有了它咱们在修改一些简体中文.繁体中文等 Unicode文本时,就不用再运用native2ascii编码了.您能够经过Eclipse中的软件晋级(Software Update)装置此插件,过程如下: 1.打开Eclipse的Help菜单,将鼠标移到Software Update子项,在呈现的子菜单中点击Find and Install:2.在Install/Update对话框中挑选Search for new fe