机器学习笔记1——Linear Regression with One Variable

Linear Regression with One Variable

Model Representation

Recall that in *regression problems*, we are taking input variables and trying to map the output onto a *continuous* expected result function.

Linear regression with one variable is also known as "univariate linear regression."

Univariate linear regression is used when you want to predict a single output value from a single input value. We‘re doing supervised learning here, so that means we already have an idea what the input/output cause and effect should be.

The Hypothesis Function

Our hypothesis function has the general form:

hθ(x)=θ01x

We give to hθ values for θ0 and θ1 to get our output ‘y‘. In other words, we are trying to create a function called hθ that is able to reliably map our input data (the x‘s) to our output data (the y‘s).

Example:

x (input) y (output)
0 4
1 7
2 7
3 8

Now we can make a random guess about our hθ function: θ0=2 and θ1=2. The hypothesis function becomes hθ(x)=2+2x.

So for input of 1 to our hypothesis, y will be 4. This is off by 3.

Cost Function

We can measure the accuracy of our hypothesis function by using a cost function. This takes an average (actually a fancier version of an average) of all the results of the hypothesis with inputs from x‘s compared to the actual output y‘s.

J(θ0,θ1)=12m∑i=1m(hθ(x(i))−y(i))2

To break it apart, it is 12x¯ where x¯ is the mean of the squares of hθ(x(i))−y(i), or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or Mean squared error. The mean is halved (12m) as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the 12 term.

Now we are able to concretely measure the accuracy of our predictor function against the correct results we have so that we can predict new results we don‘t have.

Gradient Descent

So we have our hypothesis function and we have a way of measuring how accurate it is. Now what we need is a way to automatically improve our hypothesis function. That‘s where gradient descent comes in.

Imagine that we graph our hypothesis function based on its fields θ0 and θ1 (actually we are graphing the cost function for the combinations of parameters). This can be kind of confusing; we are moving up to a higher level of abstraction. We are not graphing x and y itself, but the guesses of our hypothesis function.

We put θ0 on the x axis and θ1 on the z axis, with the cost function on the vertical y axis. The points on our graph will be the result of the cost function using our hypothesis with those specific theta parameters.

We will know that we have succeeded when our cost function is at the very bottom of the pits in our graph, i.e. when its value is the minimum.

The way we do this is by taking the derivative (the line tangent to a function) of our cost function. The slope of the tangent is the derivative at that point and it will give us a direction to move towards. We make steps down that derivative by the parameter α, called the learning rate.

The gradient descent equation is:

repeat until convergence:

θj:=θj−α∂∂θjJ(θ0,θ1)

for j=0 and j=1

Intuitively, this could be thought of as:

repeat until convergence:

θj:=θj−α[Slope of tangent aka derivative]

Gradient Descent for Linear Regression

When specifically applied to the case of linear regression, a new form of the gradient descent equation can be derived. We can substitute our actual cost function and our actual hypothesis function and modify the equation to (the derivation of the formulas are out of the scope of this course, but a really great one can be found here:

repeat until convergence: {θ0:=θ1:=}θ0−α1m∑i=1m(hθ(x(i))−y(i))θ1−α1m∑i=1m((hθ(x(i))−y(i))x(i))

where m is the size of the training set, θ0 a constant that will be changing simultaneously with θ1 and x(i),y(i)are values of the given training set (data).

Note that we have separated out the two cases for θj and that for θ1 we are multiplying x(i) at the end due to the derivative.

The point of all this is that if we start with a guess for our hypothesis and then repeatedly

apply these gradient descent equations, our hypothesis will become more and more accurate.

What‘s Next

Instead of using linear regression on just one input variable, we‘ll generalize and expand our concepts so that we can predict data with multiple input variables. Also, we‘ll solve for θ0 and θ1 exactly without needing an iterative function like gradient descent.

时间: 2024-11-08 20:08:43

机器学习笔记1——Linear Regression with One Variable的相关文章

机器学习笔记-1 Linear Regression(week 1)

1.Linear Regression with One variable Linear Regression is supervised learning algorithm, Because the data set is given a right answer for each example. And we are predicting real-valued output so it is a regression problem. Block Diagram: 2. Cost Fu

机器学习笔记-1 Linear Regression with Multiple Variables(week 2)

1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a similiar scale, approximately a -1<Xi<1 range For example: x1 = size (0-2000 feet^2) max-min or standard deviation x2 = number of bedrooms(1-5) The conto

机器学习 (一) 单变量线性回归 Linear Regression with One Variable

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang和 JerryLead 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 1.  单变量线性回归 Linear Regression with One Variable 1. 代价函数Cost Function 在单变量线性回归中,已知有一个训练集有一些关于x.y的数据(如×所示),当我们的预测值

Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.所有内容均来自Standford公开课machine

机器学习 Machine Learning(by Andrew Ng)----第二章 单变量线性回归(Linear Regression with One Variable)

第二章 单变量线性回归(Linear Regression with One Variable) <模型表示(Model Representation)>                                                             <代价函数(Cost Function)>                                                          <梯度下降(Gradient Descent)

Stanford公开课机器学习---2.单变量线性回归(Linear Regression with One Variable)

单变量线性回归(Linear Regression with One Variable) 2.1 模型表达(Model Representation) m 代表训练集中实例的数量 x 代表特征/输入变量 y 代表目标变量/输出变量 (x,y) 代表训练集中的实例 (x(i),y(i) ) 代表第 i 个观察实例 h 代表学习算法的解决方案或函数也称为假设(hypothesis) 单变量线性回归:只含有一个特征/输入变量 x hθ=θ0+θ1x 2.2 代价函数(Cost Function) 目标

Stanford公开课机器学习---3.多变量线性回归 (Linear Regression with multiple variable)

3.多变量线性回归 (Linear Regression with multiple variable) 3.1 多维特征(Multiple Features) n 代表特征的数量 x(i)代表第 i 个训练实例,是特征矩阵中的第 i 行,是一个向量(vector). x(i)j代表特征矩阵中第 i 行的第 j 个特征,也就是第 i 个训练实例的第 j 个特征. 多维线性方程: hθ=θ0+θ1x+θ2x+...+θnx 这个公式中有 n+1 个参数和 n 个变量,为了使得公式能够简化一些,引入

Machine Learning - II. Linear Regression with One Variable (Week 1)

http://blog.csdn.net/pipisorry/article/details/43115525 机器学习Machine Learning - Andrew NG courses学习笔记 单变量线性回归Linear regression with one variable 模型表示Model representation 例子: 这是Regression Problem(one of supervised learning)并且是Univariate linear regressi

MachineLearning ---- lesson 2 Linear Regression with One Variable

Linear Regression with One Variable model Representation 以上篇博文中的房价预测为例,从图中依次来看,m表示训练集的大小,此处即房价样本数量:x表示输入变量或feature(特征),此处即房子面积:y是输出变量或目标变量,此处即房子价格.(x,y)是训练集中的一个样本,如图中加上右上角(i)表示训练集中第i个样本. 上图是机器学习的一个简单流程,我们通过对Training Set(训练集)使用Learning Algorithm 来训练出一