大数据学习路线(自己制定的,从零开始)

大数据已经火了很久了,一直想了解它学习它结果没时间,过年后终于有时间了,了解了一些资料,结合我自己的情况,初步整理了一个学习路线,有问题的希望大神指点。

学习路线

Linux(shell,高并发架构,lucene,solr)

Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)

机器学习(R,mahout)

Storm(Storm,kafka,redis)

Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)

Python(python,spark python)

云计算平台(docker,kvm,openstack)

名词解释

一、Linux

lucene: 全文检索引擎的架构

solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

二、Hadoop

hadoop common

HDFS: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。

yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。

MapReduce: 软件框架,编写程序。

Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。

HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析

ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。

Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移

Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。

Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。

Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

二、Cloudera

Cloudera Manager: 管理 监控 诊断 集成

Cloudera CDH:(Cloudera‘s Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。

Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。

Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。

Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

三、机器学习/R

R: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R

mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

四、storm

Storm: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。

Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理

Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

五、Spark

Scala: 一种类似java的完全面向对象的编程语言。

Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。

Spark SQL:

Spark Streaming: 一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。

Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

jblas: 一个快速的线性代数库(JAVA)。基于BLAS与LAPACK,矩阵计算实际的行业标准,并使用先进的基础设施等所有的计算程序的ATLAS艺术的实现,使其非常快。

Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。

LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。

ATLAS: BLAS线性算法库的优化版本。

Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

六、Python

Python: 一种面向对象的、解释型计算机程序设计语言。

七、云计算平台

Docker: 开源的应用容器引擎
kvm: (Keyboard Video Mouse)
openstack:  开源的云计算管理平台项目

时间: 2024-09-30 01:52:40

大数据学习路线(自己制定的,从零开始)的相关文章

大数据怎么学习?从零开始大数据学习路线

大数据.人工智能的崛起,都让很多人看到了信息技术的日新月异,也推动了更多传统型企业逐渐往互联网企业转型.如何更好的去分析客户群体,去抓住自己的客户所需,是离不开大数据的帮助的!为此,也有越来越多的企业看到大数据程序员岗位的重要性,不断的招兵买马,以求让自己的企业能够在这信息时代的竞争中立于不败之地!创一个小群,供大家学习交流聊天如果有对学大数据方面有什么疑惑问题的,或者有什么想说的想聊的大家可以一起交流学习一起进步呀.也希望大家对学大数据能够持之以恒大数据爱好群,如果你想要学好大数据最好加入一个

大数据学习路线

偶遇大数据学习路线,赶上一次科技革命不容易,追求下,要有所作为! 一.Hadoop入门,了解什么是Hadoop 1.Hadoop产生背景2.Hadoop在大数据.云计算中的位置和关系3.国内外Hadoop应用案例介绍4.国内Hadoop的就业情况分析及课程大纲介绍5.分布式系统概述6.Hadoop生态圈以及各组成部分的简介7.Hadoop核心MapReduce例子说明 二.分布式文件系统HDFS,是数据库管理员的基础课程 1.分布式文件系统HDFS简介2.HDFS的系统组成介绍3.HDFS的组成

大数据学习路线及各阶段学习书籍推荐

大数据学习路线及各阶段学习书籍推荐!废话不多说,直接切入主题,有需要的小伙伴可以参考学习! 阶段一.大数据基础--java语言基础方面 (1)Java语言基础 Java开发介绍.熟悉Eclipse开发工具.Java语言基础.Java流程控制.Java字符串.Java数组与类和对象.数字处理类与核心技术.I/O与反射.多线程.Swing程序与集合类 (2) HTML.CSS与JavaScript PC端网站布局.HTML5+CSS3基础.WebApp页面布局.原生JavaScript交互功能开发.

大数据学习路线整理

一.大数据技术基础 1.linux操作基础 linux系统简介与安装    linux常用命令–文件操作    linux常用命令–用户管理与权限    linux常用命令–系统管理    linux常用命令–免密登陆配置与网络管理    linux上常用软件安装    linux本地yum源配置及yum软件安装    linux防火墙配置    linux高级文本处理命令cut.sed.awk    linux定时任务crontab 2.shell编程 shell编程–基本语法    shel

什么是大数据?大数据学习路线和就业方向

大数据又称巨量资料,就是数据量大.来源广.种类繁多(日志.视频.音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据. 专业的来讲:大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力.洞察力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据的5V特点:Volume(大量).Velocity(高速).Variety(多样).Value(价值密度).Veracity(真实性). 二.学大数据需要什么语言基础? 首先,学习大数据是需要

好程序员大数据学习路线之hive存储格式

好程序员大数据学习路线之hive存储格式,hive的存储格式通常是三种:textfile . sequencefile . rcfile . orc .自定义 set hive.default.fileformat=TextFile; 默认存储格式为:textfile textFile:普通文本存储,不进行压缩.查询效率较低.1.sequencefile:hive提供的二进制序列文件存储,天生压缩.sequeceFile 和 rcfile都不允许使用load方式加载数据.需要使用insert 方

好程序员大数据学习路线之hive表的查询

好程序员大数据学习路线之hive表的查询 1.join 查询 1.永远是小结果集驱动大结果集(小表驱动大表,小表放在左表). 2.尽量不要使用join,但是join是难以避免的. left join . left outer join . left semi join(左半开连接,只显示左表信息) hive在0.8版本以后开始支持left join left join 和 left outer join 效果差不多 hive的join中的on只能跟等值连接 "=",不能跟< &g

好程序员大数据学习路线分享hive的运行方式

好程序员大数据学习路线分享hive的运行方式,hive的属性设置: 1.在cli端设置 (只针对当前的session) 3.在java代码中设置 (当前连接) 2.在配置文件中设置 (所有session有效) 设置属性的优先级依次降低. cli端只能设置非hive启动需要的属性.(log属性,元数据连接属性) 查找所有属性: hive>set; 查看当前属性的值:通常是hadoop hive> set -v; 模糊查找属性: hive -S -e "set" | grep

好程序员大数据学习路线hive内部函数

好程序员大数据学习路线hive内部函数,持续为大家更新了大数据学习路线,希望对正在学习大数据的小伙伴有所帮助.1.取随机数函数:rand()语法: rand(),rand(int seed) 返回值: double 说明: 返回一个0到1范围内的随机数.如果指定seed,则会得到一个稳定的随机数序列select rand();select rand(10);2.分割字符串函数:split(str,splitor) 语法: split(string str, string pat) 返回值: ar

好程序员大数据学习路线分享高阶函数

好程序员大数据学习路线分享高阶函数,我们通常将可以做为参数传递到方法中的表达式叫做函数 高阶函数包含:作为值的函数.匿名函数.闭包.柯里化等等. 定义函数时格式:val 变量名 =?(输入参数类型和个数)?=>?函数实现和返回值类型和个数 "="表示将函数赋给一个变量 "=>"左面表示输入参数名称.类型和个数,右边表示函数的实现和返回值类型和参数个数 作为值的函数 定义函数 scala> val func = (x:Int) => x * x