机器学习之数据预处理

归一化处理

from sklearn.preprocessing import StandardScaler
X_scaler = StandardScaler()
y_scaler = StandardScaler()
X_train = X_scaler.fit_transform(X_train)
y_train = y_scaler.fit_transform(y_train)
X_test = X_scaler.transform(X_test) #同样的模型来训练转化测试数据
y_test = y_scaler.transform(y_test)

数据降维

数据规约产生更小但保持数据完整性的新数据集。在规约后的数据集上进行数据分析和挖掘将更有效率。

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。之所以使用降维后的数据表示是因为在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少冗余信息所造成的误差,提高识别(或其他应用)的精度。又或者希望通过降维算法来寻找数据内部的本质结构特征。

在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。1

主要是介绍了PCA,还有其他降维算法:LDA(Linear Discriminant Analysis)2,LLE (Locally Linear Embedding) 局部线性嵌入3,拉普拉斯特征映射4

主成分分析--PCA

主成分分析也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结构的技术。PCA通常用于高维数据集的探索与可视化。还可以用于数据压缩,数据预处理等。PCA可以把可能具有相关性的高维变量合成线性无关的低维变量,称为主成分( principal components)。新的低维数据集会经可能的保留原始数据的变量。

PCA将数据投射到一个低维子空间实现降维。例如,二维数据集降维就是把点投射成一条线,数据集的每个样本都可以用一个值表示,不需要两个值。三维数据集可以降成二维,就是把变量映射成一个平面。一般情况下,n 维数据集可以通过映射降成k 维子空间。5

在Python中,主成分的函数位于Scikit-Learn下:
sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)

参数说明:

  • n_components

    1. 意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数。
    2. 类型:int或者string,缺省时默认为None,所有成分保留。赋值为int,比如n_components=1,将把原始数据降到一个维度。赋值为string,比如n_components=‘mle‘,将自动选取特征个数n,使得满足所要求的方差百分比。
  • copy
    1. 类型:bool,True或者False,缺省时默认为True
    2. 意义:表示是否在运行算法时,将原始数据复制一份。如果为True,则运行PCA算法后,原始数据的值不会有任何改变。因为是在原始数据的副本上进行运算的。
  • whiten
    1. 类型:bool,缺省时默认为False
    2. 意义:白化,是的每个特征具有相同的方差。

栗子

from sklearn.decomposition import PCA
import numpy as np
import pandas as pd

data=np.random.randn(10,4)

pca=PCA()
pca.fit(data)
pca.components_  #返回模型的各个特征向量
pca.explained_variance_ratio_  #返回各个成为各自的方差百分比(贡献率)

通过计算累计贡献率,可以确定找到一个合适的n值,比如累计达到97%时,是前3的值,那么下一步去降维时,确定n_components=3。那么,这3维数据占了原始数据95%以上的信息。6

下面,再重新建立PCA模型。

pca=PCA(3)
pca.fit(data)
low_d=pca.transform(data)  #用这个方法来降低维度
pd.DataFrame(low_d).to_excel(‘result.xlsx‘)  #保存结果
pca.inverse_transform(low_d)  #必要时,可以用这个函数来复原数据。

  1. 机器学习降维算法一:PCA(主成分分析算法)?
  2. 机器学习降维算法二:LDA(Linear Discriminant Analysis)?
  3. 机器学习降维算法三:LLE (Locally Linear Embedding) 局部线性嵌入?
  4. 机器学习降维算法四:Laplacian Eigenmaps 拉普拉斯特征映射?
  5. 7-dimensionality-reduction-with-pca?

python matplotlib 中文显示参数设置

方法一:
每次编写代码时进行参数设置

#coding:utf-8
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif‘]=[‘SimHei‘] #用来正常显示中文标签
plt.rcParams[‘axes.unicode_minus‘]=False #用来正常显示负号
#有中文出现的情况,需要u‘内容‘
方法二:
import matplotlib
matplotlib.matplotlib_fname() #将会获得matplotlib包所在文件夹
然后进入C:\Anaconda64\Lib\site-packages\matplotlib\mpl-data该文件夹下就能看到matplotlibrc配置文件。2

1)打开该配置文件,找到下面这行:

#font.serif : Bitstream Vera Serif, New Century Schoolbook, Century Schoolbook L, Utopia, ITC Bookman, Bookman, Nimbus Roman No9 L, Times New Roman, Times, Palatino, Charter, serif
然后,将前面的注释去掉!
2)找中文字体放到matplotlib字体库中。
在Windows文件夹下:C:\Windows\Fonts\Microsoft YaHei UI复制该字体,然后粘贴到C:\Anaconda64\Lib\site-packages\matplotlib\mpl-data\fonts\ttf文件夹,并给它重命名为Vera.ttf。

注明:这一步的作用其实就是将matplotlib中一个默认的字体替换为我们复制过来的中文字体,将这个中文字体命名改为matplotlib中有的字体名。3
方法三:
import sys
default_encoding = ‘utf-8‘
if sys.getdefaultencoding() != default_encoding:
reload(sys)
sys.setdefaultencoding(default_encoding)

时间: 2024-12-24 14:35:35

机器学习之数据预处理的相关文章

机器学习之数据预处理,Pandas读取excel数据

Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结合xlrd可以达到修改excel文件目的.openpyxl可以对excel文件同时进行读写操作. 而说到数据预处理,pandas就体现除了它的强大之处,并且它还支持可读写多种文档格式,其中就包括对excel的读写.本文重点就是介绍pandas对excel数据集的预处理. 机器学习常用的模型对数据输入

【机器学习】数据预处理之将类别数据转换为数值

在进行python数据分析的时候,首先要进行数据预处理. 有时候不得不处理一些非数值类别的数据,嗯, 今天要说的就是面对这些数据该如何处理. 目前了解到的大概有三种方法: 1,通过LabelEncoder来进行快速的转换: 2,通过mapping方式,将类别映射为数值.不过这种方法适用范围有限: 3,通过get_dummies方法来转换. 1 import pandas as pd 2 from io import StringIO 3 4 csv_data = '''A,B,C,D 5 1,2

python 机器学习之数据预处理

#数据预处理方法,主要是处理数据的量纲和同趋势化问题. import numpy as np from sklearn import preprocessing #零均值规范 data=np.random.rand(3,4)#随机生成3行4列的数据 data_standardized=preprocessing.scale(data)#对数据进行归一化处理,即每个数值减去均值除以方差 主要用于svm #线性数据变换最大最小化处理 data_scaler=preprocessing.MinMaxS

机器学习:数据预处理之独热编码(One-Hot)

在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的,而是离散的,无序的.通常我们需要对其进行特征数字化. 那什么是特征数字化呢?例子如下: 性别特征:["男","女"] 祖国特征:["中国","美国,"法国"] 运动特征:["足球","篮球","羽毛球","乒乓球"] 假如某个

机器学习入门-数据预处理-数字映射和one-hot编码 1.LabelEncoder(进行数据自编码) 2.map(进行字典的数字编码映射) 3.OnehotEncoder(进行one-hot编码) 4.pd.get_dummies(直接对特征进行one-hot编码)

1.LabelEncoder() # 用于构建数字编码 2 .map(dict_map)  根据dict_map字典进行数字编码的映射 3.OnehotEncoder()  # 进行one-hot编码,输入的参数必须是二维的,因此需要做reshape,同时使用toarray() 转换为列表形式 3  pd.get_dummies(feature,drop_first=False) 如果填单个特征的话,只对一个特征做one-hot编码映射, drop_first表示去除one-hot编码后的第一列

面向机器学习:数据平台设计与搭建实践

机器学习作为近几年的一项热门技术,不仅凭借众多"人工智能"产品而为人所熟知,更是从根本上增能了传统的互联网产品.在近期举办的2018 ArchSummit全球架构师峰会上,个推首席数据架构师袁凯,基于他在数据平台的建设以及数据产品研发的多年经验,分享了<面向机器学习数据平台的设计与搭建>. 一.背景:机器学习在个推业务中的应用场景 作为独立的智能大数据服务商,个推主要业务包括开发者服务.精准营销服务和各垂直领域的大数据服务.而机器学习技术在多项业务及产品中均有涉及:基于用户

机器学习实战:数据预处理之独热编码(One-Hot Encoding)

问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from Europe", "from US", "from Asia"] ["uses Firefox", "uses Chrome", "uses Safari", "uses Internet

特征提取(机器学习数据预处理)

特征提取(机器学习数据预处理) 特征提取与特征选择都是数据降维的技术,不过二者有着本质上的区别:特征选择能够保持数据的原始特征,最终得到的降维数据其实是原数据集的一个子集:而特征提取会通过数据转换或数据映射得到一个新的特征空间,尽管新的特征空间是在原特征基础上得来的,但是凭借人眼观察可能看不出新数据集与原始数据集之间的关联. 这里介绍2种常见的特征提取技术: 1)主成分分析(PCA) 2)线性判别分析(LDA) 1.主成分分析(PCA) 一种无监督的数据压缩,数据提取技术,通常用于提高计算效率,

08-05 细分构建机器学习应用程序的流程-数据预处理

目录 细分构建机器学习应用程序的流程-数据预处理 一.1.1 缺失值处理 1.1 1.1.1 删除缺失值 1.1.1 4.6.1.2 填充缺失值 二.1.2 异常值处理 三.1.3 自定义数据类型编码 四.1.4 通过sklearn对数据类型编码 五.1.5 独热编码 5.1 1.5.1 sklearn做独热编码 5.2 1.5.2 pandas做独热编码 六.1.6 数据标准化 6.1 1.6.1 最小-最大标准化 6.2 1.6.2 Z-score标准化 七.1.7 二值化数据 八.1.8