[LeetCode] Coin Change 硬币找零

You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.

Example 1:
coins = [1, 2, 5], amount = 11
return 3 (11 = 5 + 5 + 1)

Example 2:
coins = [2], amount = 3
return -1.

Note:
You may assume that you have an infinite number of each kind of coin.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

这道题给我们了一些可用的硬币值,又给了一个钱数,问我们最小能用几个硬币来找零。根据题目中的例子可知,不是每次都会给全1,2,5的硬币,有时候没有1分硬币,那么有的钱数就没法找零,需要返回-1。这道题跟CareerCup上的那道9.8 Represent N Cents 美分的组成有些类似,那道题给全了所有的美分,25,10,5,1,然后给我们一个钱数,问我们所有能够找零的方法,而这道题只让我们求出最小的那种,对于求极值问题,我们还是主要考虑动态规划Dynamic Programming来做,我们维护一个一维动态数组dp,其中dp[i]表示钱数为i时的最小硬币数的找零,递推式为:

dp[i] = min(dp[i], dp[i - coins[j]] + 1);

其中coins[j]为第j个硬币,而i - coins[j]为钱数i减去其中一个硬币的值,剩余的钱数在dp数组中找到值,然后加1和当前dp数组中的值做比较,取较小的那个更新dp数组。先来看迭代的写法如下所示:

解法一:

// Non-recursion
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, amount + 1);
        dp[0] = 0;
        for (int i = 1; i <= amount; ++i) {
            for (int j = 0; j < coins.size(); ++j) {
                if (coins[j] <= i) {
                    dp[i] = min(dp[i], dp[i - coins[j]] + 1);
                }
            }
        }
        return dp[amount] > amount ? -1 : dp[amount];
    }
};

再来看递归的写法,思路都一样,仅仅是写法有些区别:

解法二:

// Recursion
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount + 1, INT_MAX);
        dp[0] = 0;
        return coinChangeDFS(coins, amount, dp);
    }
    int coinChangeDFS(vector<int> &coins, int amount, vector<int> &dp) {
        if (amount < 0) return - 1;
        if (dp[amount] != INT_MAX) return dp[amount];
        for (int i = 0; i < coins.size(); ++i) {
            int tmp = coinChangeDFS(coins, amount - coins[i], dp);
            if (tmp >= 0) dp[amount] = min(dp[amount], tmp + 1);
        }
        return dp[amount] = dp[amount] == INT_MAX ? -1 : dp[amount];
    }
};

最后来看一种使用哈希表的递归解法:

解法三:

// Recursion
class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        unordered_map<int, int> dp;
        dp[0] = 0;
        return coinChangeDFS(coins, amount, dp);
    }
    int coinChangeDFS(vector<int> &coins, int amount, unordered_map<int, int> &dp) {
        if (amount < 0) return - 1;
        if (dp.find(amount) != dp.end()) return dp[amount];
        int cur = INT_MAX;
        for (int i = 0; i < coins.size(); ++i) {
            int tmp = coinChangeDFS(coins, amount - coins[i], dp);
            if (tmp >= 0) cur = min(cur, tmp + 1);
        }
        return dp[amount] = cur == INT_MAX ? -1 : cur;
    }
};

类似题目:

9.8 Represent N Cents 美分的组成

参考资料:

https://leetcode.com/discuss/76194/c-o-n-amount-time-o-amount-space-dp-solution

https://leetcode.com/discuss/76217/java-both-iterative-recursive-solutions-with-explanations

LeetCode All in One 题目讲解汇总(持续更新中...)

时间: 2024-10-24 17:26:46

[LeetCode] Coin Change 硬币找零的相关文章

硬币找零问题之动态规划

今天我们看一下动态规划的硬币找零问题,主要通过一系列编程题分析动态规划的规律,只要掌握这一规律,许多动态规划的相关问题都可以类比得到. 题目1:给定数组arr,arr中所有的值都是正数且不重复.每个值代表一种面值的货币,每种面值的货币可以使用任意张,再给定一个整数aim代表要找的钱数,求组成aim的最少货币数. 举例: arr[5,2,3],aim=20.  4张5元可以组成20元,其他的找钱方案都要使用更多张的货币,所以返回4. 题解: 一眼看去这道题好像可以用贪心算法可解,但是仔细分析发现有

硬币找零&&爬楼梯&&猴子摘香蕉

硬币找零&&爬楼梯&&猴子摘香蕉 假设有几种硬币,如1.3.5,并且数量无限.请找出能够组成某个数目的找零所使用最少的硬币数. #include"CoinProblem.h" #include<iostream> int countNum=MAX; void CoinProblem(int *coin,int Length,int Value,int count){ if(Value==0){ if(countNum>count){ c

DP:硬币找零

在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资.我们应该注意到,人民币的硬币系统是100,50,20,10,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是:我们可能没有这样一种好的硬币系统,因此用贪心算法不能求出最少的硬币数,甚至有些金钱总数还不能用这些硬币找零.例如,如果硬币系统是40,30

硬币找零问题

硬币找零问题一个经典问题,也是阐述动态规划法几乎必讲的一个例子. 硬币找零问题描述:现存在一堆面值为 V1.V2.V3 - 个单位的硬币, 各单位的硬币数目不限, 问最少需要多少个硬币才能找出总值为 T 个单位的零钱? 比如: 假设这一堆面值分别为 1.2.5.21.25 元,需要找出总值 T 为 63 元的零钱. 基于动态规划的思想,我们可以从目标值为 1 元开始计算出最少需要几个硬币,然后再求 2 元.3元- 每一次求得的结果都保存在一个数组中,以后需要用到时则直接取出即可. #includ

硬币找零问题的动态规划实现

一,问题描述 给定一组硬币数,找出一组最少的硬币数,来找换零钱N. 比如,可用来找零的硬币为: 1.3.4   待找的钱数为 6.用两个面值为3的硬币找零,最少硬币数为2.而不是 4,1,1 因此,总结下该问题的特征:①硬币可重复多次使用.②在某些情况下,该问题可用贪心算法求解.具体可参考:某种 找换硬币问题的贪心算法的正确性证明 二,动态规划分析 为了更好的分析,先对该问题进行具体的定义:将用来找零的硬币的面值存储在一个数组中.如下: coinsValues[i] 表示第 i 枚硬币的面值.比

nyoj995硬币找零(dp完全背包)

硬币找零 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05, 0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是: 我们可能没有这样一种好的硬币系统, 因此

NYOJ 995 硬币找零

硬币找零 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05, 0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是: 我们可能没有这样一种好的硬币系统, 因此

动态规划求解最多有几种方案求解硬币找零问题

一,问题描述 假设有 m 种面值不同的硬币,存储在 coinsValues数组中,现需要使用这些硬币来找钱,各种硬币的使用个数不限. 求对于给定的钱数N,我们最多有几种不同的找钱方式.硬币的顺序并不重要. 二,动态规划分析 为了更好的分析,先对该问题进行具体的定义:将用来找零的硬币的面值存储在一个数组中.如下: coinsValues[i] 表示第 i 枚硬币的面值.比如, 第 i 枚硬币     面值 1                1 2                3 3       

硬币找零-记忆化搜索(DP动态规划)

硬币找零 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在现实生活中,我们经常遇到硬币找零的问题,例如,在发工资时,财务人员就需要计算最少的找零硬币数,以便他们能从银行拿回最少的硬币数,并保证能用这些硬币发工资. 我们应该注意到,人民币的硬币系统是 100,50,20,10,5,2,1,0.5,0.2,0.1,0.05, 0.02,0.01 元,采用这些硬币我们可以对任何一个工资数用贪心算法求出其最少硬币数. 但不幸的是: 我们可能没有这样一种好的硬币系统, 因此