数据结构之线性表代码实现顺序存储,链式存储,静态链表(选自大话数据结构)

一,线性表顺序存储

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <io.h>
#include <math.h>
#include <time.h>

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 20 /* 存储空间初始分配量 */

typedef int Status;          /* Status是函数的类型,其值是函数结果状态代码。如OK等 */
typedef int ElemType;        /* ElemType类型依据实际情况而定,这里如果为int */

Status visit(ElemType c)
{
    printf("%d ",c);
    return OK;
}

typedef struct
{
	ElemType data[MAXSIZE];        /* 数组,存储数据元素 */
	int length;                                /* 线性表当前长度 */
}SqList;

/* 初始化顺序线性表 */
Status InitList(SqList *L)
{
    L->length=0;
    return OK;
}

/* 初始条件:顺序线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE */
Status ListEmpty(SqList L)
{
	if(L.length==0)
		return TRUE;
	else
		return FALSE;
}

/* 初始条件:顺序线性表L已存在。

操作结果:将L重置为空表 */
Status ClearList(SqList *L)
{
    L->length=0;
    return OK;
}

/* 初始条件:顺序线性表L已存在。操作结果:返回L中数据元素个数 */
int ListLength(SqList L)
{
	return L.length;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:用e返回L中第i个数据元素的值,注意i是指位置。第1个位置的数组是从0開始 */
Status GetElem(SqList L,int i,ElemType *e)
{
    if(L.length==0 || i<1 || i>L.length)
            return ERROR;
    *e=L.data[i-1];

    return OK;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:返回L中第1个与e满足关系的数据元素的位序。 */
/* 若这种数据元素不存在。则返回值为0 */
int LocateElem(SqList L,ElemType e)
{
    int i;
    if (L.length==0)
            return 0;
    for(i=0;i<L.length;i++)
    {
            if (L.data[i]==e)
                    break;
    }
    if(i>=L.length)
            return 0;

    return i+1;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L), */
/* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */
Status ListInsert(SqList *L,int i,ElemType e)
{
	int k;
	if (L->length==MAXSIZE)  /* 顺序线性表已经满 */
		return ERROR;
	if (i<1 || i>L->length+1)/* 当i比第一位置小或者比最后一位置后一位置还要大时 */
		return ERROR;

	if (i<=L->length)        /* 若插入数据位置不在表尾 */
	{
		for(k=L->length-1;k>=i-1;k--)  /* 将要插入位置之后的数据元素向后移动一位 */
			L->data[k+1]=L->data[k];
	}
	L->data[i-1]=e;          /* 将新元素插入 */
	L->length++;

	return OK;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:删除L的第i个数据元素,并用e返回其值,L的长度减1 */
Status ListDelete(SqList *L,int i,ElemType *e)
{
    int k;
    if (L->length==0)               /* 线性表为空 */
		return ERROR;
    if (i<1 || i>L->length)         /* 删除位置不对 */
        return ERROR;
    *e=L->data[i-1];
    if (i<L->length)                /* 如果删除不是最后位置 */
    {
        for(k=i;k<L->length;k++)/* 将删除位置后继元素前移 */
			L->data[k-1]=L->data[k];
    }
    L->length--;
    return OK;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每一个数据元素输出 */
Status ListTraverse(SqList L)
{
	int i;
    for(i=0;i<L.length;i++)
            visit(L.data[i]);
    printf("\n");
    return OK;
}

void unionL(SqList *La,SqList Lb)
{
	int La_len,Lb_len,i;
	ElemType e;
	La_len=ListLength(*La);
	Lb_len=ListLength(Lb);
	for (i=1;i<=Lb_len;i++)
	{
		GetElem(Lb,i,&e);
		if (!LocateElem(*La,e))
			ListInsert(La,++La_len,e);
	}
}

int main()
{

    SqList L;
	SqList Lb;

    ElemType e;
    Status i;
    int j,k;
    i=InitList(&L);
    printf("初始化L后:L.length=%d\n",L.length);
    for(j=1;j<=5;j++)
            i=ListInsert(&L,1,j);
    printf("在L的表头依次插入1~5后:L.data=");
    ListTraverse(L); 

    printf("L.length=%d \n",L.length);
    i=ListEmpty(L);
    printf("L是否空:i=%d(1:是 0:否)\n",i);

    i=ClearList(&L);
    printf("清空L后:L.length=%d\n",L.length);
    i=ListEmpty(L);
    printf("L是否空:i=%d(1:是 0:否)\n",i);

    for(j=1;j<=10;j++)
            ListInsert(&L,j,j);
    printf("在L的表尾依次插入1~10后:L.data=");
    ListTraverse(L); 

    printf("L.length=%d \n",L.length);

    ListInsert(&L,1,0);
    printf("在L的表头插入0后:L.data=");
    ListTraverse(L);
    printf("L.length=%d \n",L.length);

    GetElem(L,5,&e);
    printf("第5个元素的值为:%d\n",e);
    for(j=3;j<=4;j++)
    {
            k=LocateElem(L,j);
            if(k)
                    printf("第%d个元素的值为%d\n",k,j);
            else
                    printf("没有值为%d的元素\n",j);
    }

    k=ListLength(L); /* k为表长 */
    for(j=k+1;j>=k;j--)
    {
            i=ListDelete(&L,j,&e); /* 删除第j个数据 */
            if(i==ERROR)
                    printf("删除第%d个数据失败\n",j);
            else
                    printf("删除第%d个的元素值为:%d\n",j,e);
    }
    printf("依次输出L的元素:");
    ListTraverse(L); 

    j=5;
    ListDelete(&L,j,&e); /* 删除第5个数据 */
    printf("删除第%d个的元素值为:%d\n",j,e);

    printf("依次输出L的元素:");
    ListTraverse(L); 

	//构造一个有10个数的Lb
	i=InitList(&Lb);
    for(j=6;j<=15;j++)
            i=ListInsert(&Lb,1,j);

	unionL(&L,Lb);

	printf("依次输出合并了Lb的L的元素:");
    ListTraverse(L); 

    return 0;
}

二,线性表链式存储

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <io.h>
#include <math.h>
#include <time.h>

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 20 /* 存储空间初始分配量 */

typedef int Status;/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int ElemType;/* ElemType类型依据实际情况而定,这里如果为int */

Status visit(ElemType c)
{
    printf("%d ",c);
    return OK;
}

typedef struct Node
{
    ElemType data;
    struct Node *next;
}Node;
typedef struct Node *LinkList; /* 定义LinkList */

/* 初始化顺序线性表 */
Status InitList(LinkList *L)
{
    *L=(LinkList)malloc(sizeof(Node)); /* 产生头结点,并使L指向此头结点 */
    if(!(*L)) /* 存储分配失败 */
            return ERROR;
    (*L)->next=NULL; /* 指针域为空 */

    return OK;
}

/* 初始条件:顺序线性表L已存在。操作结果:若L为空表,则返回TRUE,否则返回FALSE */
Status ListEmpty(LinkList L)
{
    if(L->next)
            return FALSE;
    else
            return TRUE;
}

/* 初始条件:顺序线性表L已存在。操作结果:将L重置为空表 */
Status ClearList(LinkList *L)
{
	LinkList p,q;
	p=(*L)->next;           /*  p指向第一个结点 */
	while(p)                /*  没到表尾 */
	{
		q=p->next;
		free(p);
		p=q;
	}
	(*L)->next=NULL;        /* 头结点指针域为空 */
	return OK;
}

/* 初始条件:顺序线性表L已存在。

操作结果:返回L中数据元素个数 */
int ListLength(LinkList L)
{
    int i=0;
    LinkList p=L->next; /* p指向第一个结点 */
    while(p)
    {
        i++;
        p=p->next;
    }
    return i;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L) */
/* 操作结果:用e返回L中第i个数据元素的值 */
Status GetElem(LinkList L,int i,ElemType *e)
{
	int j;
	LinkList p;		/* 声明一结点p */
	p = L->next;		/* 让p指向链表L的第一个结点 */
	j = 1;		/*  j为计数器 */
	while (p && j<i)  /* p不为空或者计数器j还没有等于i时,循环继续 */
	{
		p = p->next;  /* 让p指向下一个结点 */
		++j;
	}
	if ( !p || j>i )
		return ERROR;  /*  第i个元素不存在 */
	*e = p->data;   /*  取第i个元素的数据 */
	return OK;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:返回L中第1个与e满足关系的数据元素的位序。

*/
/* 若这种数据元素不存在,则返回值为0 */
int LocateElem(LinkList L,ElemType e)
{
    int i=0;
    LinkList p=L->next;
    while(p)
    {
        i++;
        if(p->data==e) /* 找到这种数据元素 */
                return i;
        p=p->next;
    }

    return 0;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L), */
/* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */
Status ListInsert(LinkList *L,int i,ElemType e)
{
	int j;
	LinkList p,s;
	p = *L;
	j = 1;
	while (p && j < i)     /* 寻找第i个结点 */
	{
		p = p->next;
		++j;
	}
	if (!p || j > i)
		return ERROR;   /* 第i个元素不存在 */
	s = (LinkList)malloc(sizeof(Node));  /*  生成新结点(C语言标准函数) */
	s->data = e;
	s->next = p->next;      /* 将p的后继结点赋值给s的后继  */
	p->next = s;          /* 将s赋值给p的后继 */
	return OK;
}

/* 初始条件:顺序线性表L已存在。1≤i≤ListLength(L) */
/* 操作结果:删除L的第i个数据元素。并用e返回其值。L的长度减1 */
Status ListDelete(LinkList *L,int i,ElemType *e)
{
	int j;
	LinkList p,q;
	p = *L;
	j = 1;
	while (p->next && j < i)	/* 遍历寻找第i个元素 */
	{
        p = p->next;
        ++j;
	}
	if (!(p->next) || j > i)
	    return ERROR;           /* 第i个元素不存在 */
	q = p->next;
	p->next = q->next;			/* 将q的后继赋值给p的后继 */
	*e = q->data;               /* 将q结点中的数据给e */
	free(q);                    /* 让系统回收此结点。释放内存 */
	return OK;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每一个数据元素输出 */
Status ListTraverse(LinkList L)
{
    LinkList p=L->next;
    while(p)
    {
        visit(p->data);
        p=p->next;
    }
    printf("\n");
    return OK;
}

/*  随机产生n个元素的值,建立带表头结点的单链线性表L(头插法) */
void CreateListHead(LinkList *L, int n)
{
	LinkList p;
	int i;
	srand(time(0));                         /* 初始化随机数种子 */
	*L = (LinkList)malloc(sizeof(Node));
	(*L)->next = NULL;                      /*  先建立一个带头结点的单链表 */
	for (i=0; i<n; i++)
	{
		p = (LinkList)malloc(sizeof(Node)); /*  生成新结点 */
		p->data = rand()%100+1;             /*  随机生成100以内的数字 */
		p->next = (*L)->next;
		(*L)->next = p;						/*  插入到表头 */
	}
}

/*  随机产生n个元素的值,建立带表头结点的单链线性表L(尾插法) */
void CreateListTail(LinkList *L, int n)
{
	LinkList p,r;
	int i;
	srand(time(0));                      /* 初始化随机数种子 */
	*L = (LinkList)malloc(sizeof(Node)); /* L为整个线性表 */
	r=*L;                                /* r为指向尾部的结点 */
	for (i=0; i<n; i++)
	{
		p = (Node *)malloc(sizeof(Node)); /*  生成新结点 */
		p->data = rand()%100+1;           /*  随机生成100以内的数字 */
		r->next=p;                        /* 将表尾终端结点的指针指向新结点 */
		r = p;                            /* 将当前的新结点定义为表尾终端结点 */
	}
	r->next = NULL;                       /* 表示当前链表结束 */
}

int main()
{
    LinkList L;
    ElemType e;
    Status i;
    int j,k;
    i=InitList(&L);
    printf("初始化L后:ListLength(L)=%d\n",ListLength(L));
    for(j=1;j<=5;j++)
            i=ListInsert(&L,1,j);
    printf("在L的表头依次插入1~5后:L.data=");
    ListTraverse(L); 

    printf("ListLength(L)=%d \n",ListLength(L));
    i=ListEmpty(L);
    printf("L是否空:i=%d(1:是 0:否)\n",i);

    i=ClearList(&L);
    printf("清空L后:ListLength(L)=%d\n",ListLength(L));
    i=ListEmpty(L);
    printf("L是否空:i=%d(1:是 0:否)\n",i);

    for(j=1;j<=10;j++)
            ListInsert(&L,j,j);
    printf("在L的表尾依次插入1~10后:L.data=");
    ListTraverse(L); 

    printf("ListLength(L)=%d \n",ListLength(L));

    ListInsert(&L,1,0);
    printf("在L的表头插入0后:L.data=");
    ListTraverse(L);
    printf("ListLength(L)=%d \n",ListLength(L));

    GetElem(L,5,&e);
    printf("第5个元素的值为:%d\n",e);
    for(j=3;j<=4;j++)
    {
            k=LocateElem(L,j);
            if(k)
                    printf("第%d个元素的值为%d\n",k,j);
            else
                    printf("没有值为%d的元素\n",j);
    }

    k=ListLength(L); /* k为表长 */
    for(j=k+1;j>=k;j--)
    {
            i=ListDelete(&L,j,&e); /* 删除第j个数据 */
            if(i==ERROR)
                    printf("删除第%d个数据失败\n",j);
            else
                    printf("删除第%d个的元素值为:%d\n",j,e);
    }
    printf("依次输出L的元素:");
    ListTraverse(L); 

    j=5;
    ListDelete(&L,j,&e); /* 删除第5个数据 */
    printf("删除第%d个的元素值为:%d\n",j,e);

    printf("依次输出L的元素:");
    ListTraverse(L); 

    i=ClearList(&L);
    printf("\n清空L后:ListLength(L)=%d\n",ListLength(L));
    CreateListHead(&L,20);
    printf("总体创建L的元素(头插法):");
    ListTraverse(L); 

    i=ClearList(&L);
    printf("\n删除L后:ListLength(L)=%d\n",ListLength(L));
    CreateListTail(&L,20);
    printf("总体创建L的元素(尾插法):");
    ListTraverse(L); 

    return 0;
}

3。静态链表

#include <string.h>
#include <ctype.h>     

#include <stdio.h>
#include <stdlib.h>
#include <io.h>
#include <math.h>
#include <time.h>

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 1000 /* 存储空间初始分配量 */

typedef int Status;           /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef char ElemType;        /* ElemType类型依据实际情况而定,这里如果为char */

Status visit(ElemType c)
{
    printf("%c ",c);
    return OK;
}

/* 线性表的静态链表存储结构 */
typedef struct
{
    ElemType data;
    int cur;  /* 游标(Cursor) 。为0时表示无指向 */
} Component,StaticLinkList[MAXSIZE];

/* 将一维数组space中各分量链成一个备用链表,space[0].cur为头指针,"0"表示空指针 */
Status InitList(StaticLinkList space)
{
	int i;
	for (i=0; i<MAXSIZE-1; i++)
		space[i].cur = i+1;
	space[MAXSIZE-1].cur = 0; /* 眼下静态链表为空,最后一个元素的cur为0 */
	return OK;
}

/* 若备用空间链表非空,则返回分配的结点下标。否则返回0 */
int Malloc_SSL(StaticLinkList space)
{
	int i = space[0].cur;           		/* 当前数组第一个元素的cur存的值 */
	                                		/* 就是要返回的第一个备用空暇的下标 */
	if (space[0]. cur)
	    space[0]. cur = space[i].cur;       /* 因为要拿出一个分量来使用了。 */
	                                        /* 所以我们就得把它的下一个 */
	                                        /* 分量用来做备用 */
	return i;
}

/*  将下标为k的空暇结点回收到备用链表 */
void Free_SSL(StaticLinkList space, int k)
{
    space[k].cur = space[0].cur;    /* 把第一个元素的cur值赋给要删除的分量cur */
    space[0].cur = k;               /* 把要删除的分量下标赋值给第一个元素的cur */
}

/* 初始条件:静态链表L已存在。

操作结果:返回L中数据元素个数 */
int ListLength(StaticLinkList L)
{
    int j=0;
    int i=L[MAXSIZE-1].cur;
    while(i)
    {
        i=L[i].cur;
        j++;
    }
    return j;
}

/*  在L中第i个元素之前插入新的数据元素e   */
Status ListInsert(StaticLinkList L, int i, ElemType e)
{
    int j, k, l;
    k = MAXSIZE - 1;   /* 注意k首先是最后一个元素的下标 */
    if (i < 1 || i > ListLength(L) + 1)
        return ERROR;
    j = Malloc_SSL(L);   /* 获得空暇分量的下标 */
    if (j)
    {
		L[j].data = e;   /* 将数据赋值给此分量的data */
		for(l = 1; l <= i - 1; l++)   /* 找到第i个元素之前的位置 */
		   k = L[k].cur;
		L[j].cur = L[k].cur;    /* 把第i个元素之前的cur赋值给新元素的cur */
		L[k].cur = j;           /* 把新元素的下标赋值给第i个元素之前元素的ur */
		return OK;
    }
    return ERROR;
}

/*  删除在L中第i个数据元素   */
Status ListDelete(StaticLinkList L, int i)
{
    int j, k;
    if (i < 1 || i > ListLength(L))
        return ERROR;
    k = MAXSIZE - 1;
    for (j = 1; j <= i - 1; j++)
        k = L[k].cur;
    j = L[k].cur;
    L[k].cur = L[j].cur;
    Free_SSL(L, j);
    return OK;
} 

Status ListTraverse(StaticLinkList L)
{
    int j=0;
    int i=L[MAXSIZE-1].cur;
    while(i)
    {
            visit(L[i].data);
            i=L[i].cur;
            j++;
    }
    return j;
    printf("\n");
    return OK;
}

int main()
{
    StaticLinkList L;
    Status i;
    i=InitList(L);
    printf("初始化L后:L.length=%d\n",ListLength(L));

    i=ListInsert(L,1,'F');
    i=ListInsert(L,1,'E');
    i=ListInsert(L,1,'D');
    i=ListInsert(L,1,'B');
    i=ListInsert(L,1,'A');

    printf("\n在L的表头依次插入FEDBA后:\nL.data=");
    ListTraverse(L); 

    i=ListInsert(L,3,'C');
    printf("\n在L的“B”与“D”之间插入“C”后:\nL.data=");
    ListTraverse(L); 

    i=ListDelete(L,1);
    printf("\n在L的删除“A”后:\nL.data=");
    ListTraverse(L); 

    printf("\n");

    return 0;
}
时间: 2024-08-08 15:37:41

数据结构之线性表代码实现顺序存储,链式存储,静态链表(选自大话数据结构)的相关文章

线性表的Java实现--链式存储(单向链表)

线性表的Java实现--链式存储(单向链表) 单向链表(单链表)是链表的一种,其特点是链表的链接方向是单向的,对链表的访问要通过顺序读取从头部开始. 链式存储结构的线性表将采用一组任意的存储单元存放线性表中的数据元素.由于不需要按顺序存储,链表在插入.删除数据元素时比顺序存储要快,但是在查找一个节点时则要比顺序存储要慢. 使用链式存储可以克服顺序线性表需要预先知道数据大小的缺点,链表结构可以充分利用内存空间,实现灵活的内存动态管理.但是链式存储失去了数组随机存取的特点,同时增加了节点的指针域,空

2、线性表的实现:链式存储、单链表

1 package ren.laughing.datastructure.baseImpl; 2 3 import ren.laughing.datastructure.base.List; 4 import ren.laughing.datastructure.base.Strategy; 5 import ren.laughing.datastructure.exception.OutOfBoundaryException; 6 /** 7 * 线性表的实现:链式存储结构:单链表 8 * @

c数据结构 -- 线性表之 复杂的链式存储结构

复杂的链式存储结构 循环链表 定义:是一种头尾相接的链表(即表中最后一个结点的指针域指向头结点,整个链表形成一个环) 优点:从表中任一节点出发均可找到表中其他结点 注意:涉及遍历操作时,终止条件是判断 p->next == L? 双向链表 定义:在单链表的每个结点离再增加一个指向直接前驱的指针域 prior,这样链表中就形成了有 两个方向不用的链,故称为双向链表 双向循环链表 定义: 和单链的循环表类似,双向链表也可以有循环表 ·让头节点的前驱指针指向链表的最后一个结点 ·让最后一个结点的后继指

线性表的Java实现--链式存储(双向链表)

有了单向链表的基础,双向链表的实现就容易多了. 双向链表的一般情况: 增加节点: 删除节点: 双向链表的Java实现: package com.liuhao.algorithm;      public class DuLinkList<T> {          /**       * 内部类:链表中的一个节点       *        * @author liuhao data 节点中的数据 prev 指向前一个节点的引用 next 指向下一个节点的引用       */       

c数据结构链式存储-静态链表

#include "string.h" #include "ctype.h" #include "stdio.h" #include "stdlib.h" #include "io.h" #include "math.h" #include "time.h" #define OK 1 #define ERROR 0 #define TRUE 1 #define FAL

线性表 顺序存储 链式存储 ---java实现

首先抽象出一个线性表抽象类(包含基本的增删操作) public abstract class MyAbstractList<E> { public abstract void add(E t); public abstract void add(int index,E t); public abstract void remove(); public abstract void remove(int index); public abstract int getCount(); public

Java实现线性表-顺序表示和链式表示

顺序表示和链式表示的比较: 1.读写方式:顺序表可以顺序存取,也可以随机存取:链表只能从表头顺序存取元素: 2.逻辑结构与物理结构:顺序存储时,逻辑上相邻的元素其对应的物理存储位置也相邻:链式存储时,逻辑上相邻的元素,其物理存储位置则不一定相邻: 3.查找.插入和删除操作: 按值查找,当线性表在无序的情况下,两者的时间复杂度均为o(n):而当顺序表有序时,可采用折半查找,此时时间复杂度为o(log n): 按位查找,顺序表支持随机访问,时间复杂度为o(1):而链表的平均时间复杂度为o(n). 顺

线性表的链式存储——单链表的实现

1,本文目标: 1,完成链式存储结构线性表的实现: 2,LinkList 设计要点: 1,类模板,通过头结点访问后继结点: 2,定义内部结点类型 Node,用于描述数据域和指针域: 3,实现线性表的关键操作(增删查等): 3,链表的定义: 4,LinkList 链表的实现: 1 #ifndef LINKLIST_H 2 #define LINKLIST_H 3 4 #include "List.h" 5 #include "Exception.h" 6 7 /* 链

【数据结构】链式存储单链表

数据结构之单链表的链式存储实现 //====================================================================== // // Copyright (C) 2014-2015 SCOTT // All rights reserved // // filename: List.c // description: a demo to display SeqList // // created by SCOTT at 01/28/2015