Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
代码实现:
import java.util.Scanner; class Main{ public static void main(String[] args){ Scanner sc=new Scanner(System.in); int t=sc.nextInt(); int k=t; while(t-->0){ int n=sc.nextInt(); int[] a=new int[n]; int[] dp=new int[n]; for(int i=0;i<n;i++){ a[i]=sc.nextInt(); dp[i]=a[i]; } int start=1; int end=1; for(int i=1;i<n;i++){ dp[i]=Math.max(dp[i],dp[i-1]+a[i]); } int max=dp[0],sum=0,j=0; for(int i=0;i<n;i++){ if(max<dp[i]){ max=dp[i]; end=i+1; start=j+1; } if(dp[i]<0){//当dp[i]<0时起始位置移至i+1 j=i+1; } } System.out.println("Case "+(k-t)+":"); System.out.println(max+" "+start+" "+end); if(t!=0){ System.out.println(); } } } }