MeteoInfoLab脚本示例:站点数据散点图

这里演示从micaps第一类数据(地面全要素观测)中读取一个变量(用DimDataFile类的stationdata方法),然后maskout掉中国区域之外的数据,利用scatterm函数绘制散点图。

脚本程序:

f = addfile_micaps(‘D:/Temp/micaps/10101414.000‘)
pr = f.stationdata(‘Visibility‘)
layer = shaperead(‘D:/Temp/map/china.shp‘)
pr = pr.maskout(layer)
axesm()
mlayer = shaperead(‘D:/Temp/map/country1.shp‘)
geoshow(mlayer, edgecolor=(0,0,255))
layer = scatterm(pr)
title(‘Visibility‘)
xlim(70, 140)
ylim(15, 55)
colorbar(layer, orientation=‘horizontal‘)
时间: 2024-10-18 02:05:32

MeteoInfoLab脚本示例:站点数据散点图的相关文章

MeteoInfoLab脚本示例:数据投影-FLEXPART

FLEXPART是一个类似HYSPLIT的扩散模式,它输出的netcdf文件参照了WRF,可惜全局属性没有写全,比如只有一个投影名称(例如Lambert),没有相关的投影参数:中央经度,标准纬度等等.必须查阅WRF的头文件才能重建投影(为什么不照猫画虎把属性写全呢?).数据的经纬度坐标是有的,但在Lambert投影下的坐标没有,可以通过projectxy函数获得投影下的x, y坐标,其中的lon, lat是数据左下角的经纬度. 脚本程序: f = addfile('D:/Temp/nc/head

MeteoInfoLab脚本示例:站点数据绘制等值线

站点数据绘制等值线需要首先将站点数据插值为格点数据,MeteoInfo中提供了反距离权法(IDW)和cressman两个方法,其中IDW方法可以有插值半径的选项.这里示例读取一个MICAPS第一类数据(地面全要素观测),获取6小时累积降水数据(Precipitation6h),然后用站点数据的griddata函数将站点数据插值为格点数据,再利用contourfm函数创建等值线填色图层(等值线间隔和颜色可以自定义). 脚本程序(经纬度投影): #Set data folders basedir =

MeteoInfoLab脚本示例:AMSR-E卫星数据投影

AMSR-E(http://nsidc.org/data/amsre/index.html)数据中的Land3数据是HDF-EOS4格式,投影是Cylindrical_Equal_Area.这里示例读取数据并投影至等经纬度投影. 脚本程序: #Add data file fn = 'AMSR_E_L3_DailyLand_V06_20091231.hdf' f = addfile(os.path.join('D:/Temp/hdf', fn)) #vname = 'D_Soil_Moisture

MeteoInfoLab脚本示例:FY-3C全球火点HDF数据

FY-3C全球火点HDF数据包含一个FIRES二维变量,第一维是火点数,第二维是一些属性,其中第3.4列分别是火点的纬度和经度.下面的脚本示例读出所有火点经纬度并绘图. 脚本程序: #Add data file fn = 'D:/Temp/hdf/FY3C_VIRRX_GBAL_L2_GFR_MLT_GLL_20150811_POAD_1000M_MS.HDF' f = addfile(fn) #Get data variable v = f['FIRES'] #Get data array d

MeteoInfoLab脚本示例:计算垂直螺旋度

尝试编写MeteoInfoLab脚本计算垂直螺旋度,结果未经验证. 脚本程序: print 'Open data files...' f_uwnd = addfile('D:/Temp/nc/uwnd.2011.nc') f_vwnd = addfile('D:/Temp/nc/vwnd.2011.nc') f_omega = addfile('D:/Temp/nc/omega.2011.nc') print 'Calculate vertical helicity...' tidx = 173

MeteoInfoLab脚本示例:TRMM 2A12 HDF数据

TRMM 2A12 HDF数据是卫星观测的SWATH数据(轨道数据),比格点数据处理起来要麻烦一些.数据的经纬度保存在geolocation变量中,需要先将经纬度数据读出来(均为2维数组),然后读取云水含量数据(cldWater).虽然都是2维数组,但并不是格点数据,相当于2维的散点数据,点数相当多(3019*208)如果用散点图来绘制的话会非常的慢,需要将其插值为格点数据.插值方法建议选择nearest,该方法速度最快.插值后的格点数据用imshowm函数显示为图像就很快了. 脚本程序: #A

MeteoInfoLab脚本示例:AIRS Swath HDF数据

例子中的AIRS Swath HDF数据在Polar Stereographic(南极)投影中接近矩形,需要先从数据中读出经纬度及相关数据数组,利用surfacem函数绘制Swath数据(散点),在surfacem函数中经纬度数据会被投影到目的投影坐标系(在axesm函数中定义),并从2维散点数据生成surface数据(也就是格点数据)用所谓的surface插值方法.2维散点数据可以组成格网(非矩形格网),遍历目标格点数据的每个格点,该格点落在格网中哪个网格中,就将此网格的散点值赋给该格点.有些

MeteoInfoLab脚本示例:OMI Swath HDF数据

这个例子读取OMI卫星Swath数据中的CloudFaction变量并绘图. 脚本程序: #Add data file folder = 'D:/Temp/hdf/' fns = 'OMI-Aura_L2-OMNO2_2008m0720t2016-o21357_v003-2008m0721t101450.he5' fn = folder + fns f = addfile(fn) lon_v = f['Longitude'] lat_v = f['Latitude'] lon = lon_v[:

MeteoInfoLab脚本示例:中尺度气旋散点图

全球长时间序列中尺度气旋数据(http://cioss.coas.oregonstate.edu/eddies/)有netCDF格式,散点数据类型,只有一个很大的维Nobs = 2590938.尝试读取了部分经纬度和track数据,并绘制散度图. 脚本程序: fn = 'D:/Temp/nc/tracks.20130125.nc' f = addfile(fn) n = 1000 lon = f['lon'][0:n] lat = f['lat'][0:n] track = f['track']