ZOJ 3557-How Many Sets II(Lucas定理+插板法求组合数)

题目地址:ZOJ 3557

题意:给一个集合,一共n个元素,从中选取m个元素,满足选出的元素中没有相邻的元素,一共有多少种选法(结果对p取模1 <= p <= 10^9)

思路:用插板法求出组合数。既然是从n个数中选择m个数,那么剩下的数为n-m,那么可以产生n-m+1个空,这道题就变成了把m个数插到这n-m+1个空中有多少种方法,即C(n-m+1,m)%p。然后就Lucas定理上去乱搞。因为这道题的p较大,所以不能预处理。

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <set>
#include <queue>
#include <stack>
#include <map>
#include <bitset>
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
const double esp=1e-6;
using namespace std;
LL n,m,p;
LL modxp(LL a,LL b)
{
    LL res=1;
    while(b>0){
        if(b&1)
            res=res*a%p;
        b=b>>1;
        a=a*a%p;
    }
    return res;
}
LL C(LL n,LL m)
{
    if(m>n) return 0;
    if(m==n) return 1;
    LL ans=1;
    for(int i=1;i<=m;i++){
        LL a=(n+i-m)%p;
        LL b=i%p;
        ans=ans*(a*modxp(b,p-2)%p)%p;
    }
    return ans;
}
LL Lucas(LL n,LL m)
{
    if(m==0) return 1;
    return C(n%p,m%p)*Lucas(n/p,m/p);
}
int main()
{
    while(~scanf("%lld %lld %lld",&n,&m,&p)){
        printf("%lld\n",Lucas(n-m+1,m)%p);
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2025-01-03 23:43:09

ZOJ 3557-How Many Sets II(Lucas定理+插板法求组合数)的相关文章

ZOJ 3557 How Many Sets II lucas 定理

插空法 大组合数取余 #include <cstdio> #include <cstring> using namespace std; typedef long long LL; //求整数x和y,使得ax+by=d, 且|x|+|y|最小.其中d=gcd(a,b) void gcd(LL a, LL b, LL& d, LL& x, LL& y) { if(!b) { d = a; x = 1; y = 0; } else { gcd(b, a%b, d

zoj 3557 How Many Sets II

How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition: T is a subset of S |T| = m T does not contain continuous numbers

ZOJ3557 How Many Sets II( Lucas定理)

转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition: T is

zoj——3557 How Many Sets II

How Many Sets II Time Limit: 2 Seconds      Memory Limit: 65536 KB Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition: T is a subset of S |T| = m T does not contain continuous numbers

zoj 3557 lucas定理

Given a set S = {1, 2, -, n}, number m and p, your job is to count how many set T satisfies the following condition: T is a subset of S |T| = m T does not contain continuous numbers, that is to say x and x+1 can not both in T Input There are multiple

西电校赛网络赛J题 lucas定理计算组合数

西电校赛网络赛J题  lucas定理计算组合数 问题 J: 找规律II 时间限制: 1 Sec  内存限制: 128 MB 提交: 96  解决: 16 [提交][状态][讨论版] 题目描述 现有数阵如下: 1    2  3   4     5    6 1   3   6  10  15 1   4  10   20 1   5   15 1    6 1 求这个数阵的第n行m列是多少(行列标号从1开始) 结果对10007取模 输入 多组数据,每组数据一行,包含两个整数n,m(1<=n<=

HDU3944-DP?(帕斯卡公式+Lucas定理)

DP? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others) Total Submission(s): 1930    Accepted Submission(s): 640 Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,-

BZOJ 4403 2982 Lucas定理模板

思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; const int mod=1000003; #define int long long int cases,N,L,R,fac[mod],inv[mod]; int C(int n,int m){ if(n<m)return 0; if(n<mod&&m<mod)return fac[n]*inv[n-m]

HDU 3037 Saving Beans (数论,Lucas定理)

题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后就求这个值,直接求肯定不好求,所以我们可以运用Lucas定理,来分解这个组合数,也就是Lucas(n,m,p)=C(n%p,m%p)* Lucas(n/p,m/p,p). 然后再根据费马小定理就能做了. 代码如下: 第一种: #pragma comment(linker, "/STACK:10240