双线性插值算法的详细总结

       最近在做视频拼接的项目,里面用到了图像的单应性矩阵变换,在最后的图像重映射,由于目标图像的坐标是非整数的,所以需要用到插值的方法,用的就是双线性插值,下面的博文主要是查看了前辈的博客对双线性插值算法原理进行了一个总结,在这里也感谢一些大牛的博文。

http://www.cnblogs.com/linkr/p/3630902.html

http://www.cnblogs.com/funny-world/p/3162003.html

双线性插值

假设源图像大小为mxn,目标图像为axb。那么两幅图像的边长比分别为:m/a和n/b。注意,通常这个比例不是整数,编程存储的时候要用浮点型。目标图像的第(i,j)个像素点(i行j列)可以通过边长比对应回源图像。其对应坐标为(i*m/a,j*n/b)。显然,这个对应坐标一般来说不是整数,而非整数的坐标是无法在图像这种离散数据上使用的。双线性插值通过寻找距离这个对应坐标最近的四个像素点,来计算该点的值(灰度值或者RGB值)。

若图像为灰度图像,那么(i,j)点的灰度值的数学计算模型是:

f(x,y)=b1+b2x+b3y+b4xy

其中b1,b2,b3,b4是相关的系数。关于其的计算过程如下如下:

如图,已知Q12,Q22,Q11,Q21,但是要插值的点为P点,这就要用双线性插值了,首先在x轴方向上,对R1和R2两个点进行插值,这个很简单,然后根据R1和R2对P点进行插值,这就是所谓的双线性插值。

附:维基百科--双线性插值:

双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。

假如我们想得到未知函数  在点  的值,假设我们已知函数  在 ,
及  四个点的值。

首先在 x 方向进行线性插值,得到

然后在 y 方向进行线性插值,得到

这样就得到所要的结果 ,

如果选择一个坐标系统使得  的四个已知点坐标分别为 (0, 0)、(0, 1)、(1, 0) 和 (1, 1),那么插值公式就可以化简为

或者用矩阵运算表示为

这种插值方法的结果通常不是线性的,线性插值的结果与插值的顺序无关。首先进行 y 方向的插值,然后进行 x 方向的插值,所得到的结果是一样的。

opencv和Matlab中的双线性插值

这部分的前提是,你已经明白什么是双线性插值并且在给定源图像和目标图像尺寸的情况下,可以用笔计算出目标图像某个像素点的值。当然,最好的情况是你已经用某种语言实现了网上一大堆博客上原创或转载的双线性插值算法,然后发现计算出来的结果和matlab、openCV对应的resize()函数得到的结果完全不一样。

那这个究竟是怎么回事呢?

其实答案很简单,就是坐标系的选择问题,或者说源图像和目标图像之间的对应问题。

按照网上一些博客上写的,源图像和目标图像的原点(0,0)均选择左上角,然后根据插值公式计算目标图像每点像素,假设你需要将一幅5x5的图像缩小成3x3,那么源图像和目标图像各个像素之间的对应关系如下:

只画了一行,用做示意,从图中可以很明显的看到,如果选择右上角为原点(0,0),那么最右边和最下边的像素实际上并没有参与计算,而且目标图像的每个像素点计算出的灰度值也相对于源图像偏左偏上。

那么,让坐标加1或者选择右下角为原点怎么样呢?很不幸,还是一样的效果,不过这次得到的图像将偏右偏下。

最好的方法就是,两个图像的几何中心重合,并且目标图像的每个像素之间都是等间隔的,并且都和两边有一定的边距,这也是matlab和openCV的做法。如下图:

如果你不懂我上面说的什么,没关系,只要在计算对应坐标的时候改为以下公式即可,

int x=(i+0.5)*m/a-0.5

int y=(j+0.5)*n/b-0.5

代替

int x=i*m/a

int y=j*n/b

利用上述公式,将得到正确的双线性插值结果

时间: 2024-08-02 12:21:53

双线性插值算法的详细总结的相关文章

视频图像处理基础知识0(双线性插值算法进行图像缩放)

双线性插值(说的很明白) 来自:http://www.cnblogs.com/linkr/p/3630902.html http://www.cnblogs.com/linkr/p/3630902.html 双线性插值,这个名字咋一听很高大上的样纸,再在维基百科上一查(见文末,我去,一堆的公式吓死人),像俺这种半文盲,看到公式脑子就懵的类型,真心给跪.虽然看着好复杂,但仔细一看道理再简单不过了,所以还是自己梳理一下好. 双线性插值,顾名思义就是两个方向的线性插值加起来(这解释过于简单粗暴,哈哈)

[转载]双线性插值算法进行图像缩放及性能效果优化

原文地址:双线性插值算法进行图像缩放及性能效果优化 一)转自http://handspeaker.iteye.com/blog/1545126 最近在编程时用到了双线性插值算法,对图像进行缩放.网上有很多这方面的资料,介绍的也算明白.但是,这些文章只介绍了算法,并没有具体说怎么实现以及怎么实现最好,举个例子,你可以按照网上文章的算法自己写一个双线性插值程序,用它对一张图片进行处理,然后再用matlab或者openCV的resize函数对同一张图片进行处理,得到的结果是不一样的,如果源图片较小,效

双线性插值算法及需要注意事项

原文博客地址:http://handspeaker.iteye.com/blog/1545126 最近在编程时用到了双线性插值算法,对图像进行缩放.网上有很多这方面的资料,介绍的也算明白.但是,这些文章只介绍了算法,并没有具体说怎么实现以及怎么实现最好,举个例子,你可以按照网上文章的算法自己写一个双线性插值程序,用它对一张图片进行处理,然后再用matlab或者openCV的resize函数对同一张图片进行处理,得到的结果是不一样的,如果源图片较小,效果差距就更大.以下是对于双线性插值的讲解以及上

图像缩放——双线性插值算法

在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值.如果选择一个坐标系统使得  的四个已知点坐标分别为 (0, 0).(0, 1).(1, 0) 和 (1, 1),那么插值公式就可以化简为: 用矩阵运算来表示的话就是: 图像的空间变换,也称几何变换或几何运算,包括图像的平移.旋转.镜像变换.转置.缩放等.空间变换可如下表示:设(u,v)为源图像上的点,(x,y)为目标图像上的点,则空间变换就是将源图像上(u,v)处的颜色值与目标图像上(x,y)处

双线性插值算法原理 python实现

码字不易,如果此文对你有所帮助,请帮忙点赞,感谢! 一. 双线性插值法原理: ① 何为线性插值? 插值就是在两个数之间插入一个数,线性插值原理图如下: 在位置 x 进行线性插值,插入的值为f(x) ↑  ② 各种插值法: 插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为: srcX = dstX * (srcWidth/dstWidth) srcY = dstY * (srcHeight/dstHeight) (dstX,

谈谈数字图像的缩放算法[转]

数字图像的缩放,是一个十分有趣的问题,又是一个看似简单,但又有些复杂的问题.许多朋友在具备一定的计算机图形编程的基础知识以后,都可以自己设计出一些简单的位图缩放算法.在计算机图形学和数字图像处理等学科里面,已经详细的研究过了数字图像缩放这个问题,并且已经有了成熟的算法.一些朋友由于没有学习过计算机图形学和数字图像处理,所以凭借自己的想法设计的位图缩放算法存在许多缺陷.在本文中,我将和大家一起来研究这个问题,并且学习前人所总结出来的算法. 图像的概念很容易理解,你睁开眼睛,所看到的都是图像了.而一

图像缩放算法

图像缩放算法较多,下面仅以最邻近插值算法和双线性插值算法作介绍. 如下图1所示,表示原始图像和缩放以后的图像. 图1 图像缩放(原始图像à缩放图像) 图像缩放就是将原始图像中的点经过某一算法映射到目标图像的点的行为,即要找到目标图像中的点p1对应在原始图像中点p0,简单而言就是找点p0. 假设: 原始图像src的分辨率为(srcW * srcH): 目标图像dst的分辨率为(dstW * dstH). 那么: 原始图像宽与目标图像宽的比例 原始图像高与目标图像高的比例 由 所以,原始图像中的点p

数字视频基础(四)

3. 常用视频处理算法 3.1 图像的缩放 所谓图像缩放就是创立新的像素位置并对这些新位置赋灰度值.比如,有一副大小为500x500像素的图像,想把它放大1.5倍,也即750x750像素,概念上看,一种最容易的形象化放大方法就是在原始图像上,放一个虚构的750x750的栅格.很显然栅格的间隔小于1个像素,因为,我们在一个较小的图像上去拟合它.为了对覆盖层上的任何电进行灰度赋值,我们在原图像上寻找最靠近的像素并把它的灰度付给栅格上的新像素.当对覆盖栅格的全部点都赋完值之后,就得到放大的图像.这种灰

图像放大算法

http://www.cnblogs.com/celerychen/archive/2010/11/25/3588222.html 一. 图像放大算法 图像放大有许多算法,其关键在于对未知像素使用何种插值方式.以下我们将具体分析几种常见的算法,然后从放大后的图像是否存在色彩失真,图像的细节是否得到较好的保存,放大过程所需时间是否分配合理等多方面来比较它们的优劣. 当把一个小图像放大的时候,比如放大400%,我们可以首先依据原来的相邻4个像素点的色彩值,按照放大倍数找到新的ABCD像素点的位置并进