[区间dp] poj 3280 Cheapest Palindrome

题意:

给出增加或减少某个字符的代价。

给你一个串,求让它变成回文串的最小代价。

思路:

和求次数一样。

然后注意的是其实增加和减少的性质是一样的。所以对于每个字符,取修改代价最小的就行了。

意思就是取增加和减少的最小值。

其他就同求次数的区间dp了。

代码:

#include"cstdlib"
#include"cstdio"
#include"cstring"
#include"cmath"
#include"queue"
#include"algorithm"
#include"iostream"
#include"map"
using namespace std;
#define N 2010
int dp[N][N],n;
char a[N];
int va[999];
int main()
{
    int n,k;
    while(scanf("%d%d",&n,&k)!=-1)
    {
        scanf("%s",a);
        for(int i=0;i<n;i++)
        {
            char x[3];
            scanf("%s",x);
            int y,z;
            scanf("%d%d",&y,&z);
            va[x[0]-0]=min(y,z);
        }
        memset(dp,0,sizeof(dp));
        int i,j;
        for(i=k-2;i>=0;i--)
        {
            for(j=i+1;j<k;j++)
            {
                if(a[i]==a[j])
                    dp[i][j]=dp[i+1][j-1];
                else
                    dp[i][j]=min(dp[i+1][j]+va[a[i]-0],dp[i][j-1]+va[a[j]-0]);
            }
        }
        printf("%d\n",dp[0][k-1]);
    }
    return 0;
}
时间: 2024-10-06 07:58:15

[区间dp] poj 3280 Cheapest Palindrome的相关文章

POJ 3280 Cheapest Palindrome DP题解

看到Palindrome的题目,首先想到的应该是中心问题,然后从中心出发,思考如何解决. DP问题一般是从更加小的问题转化到更加大的问题,然后是从地往上 bottom up地计算答案的. 能得出状态转移方程就好办了,本题的状态转移方程是: if (cowID[i] == cow{j]) tbl[id][i] = tbl[id][i+1];//相等的时候无需改动 else tbl[id][i] = min(tbl[!id][i+1] + cost[cowID[i]-'a'], tbl[!id][i

POJ 3280 Cheapest Palindrome(DP)

题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j 这一段位置变成回文所需的最小的代价. 1 //3280 2 #include <stdio.h> 3 #include <string.h> 4 #include <iostream> 5 6 using namespace std ; 7 8 char sh[2100]

[poj]3280 Cheapest Palindrome 题解

[poj]3280 Cheapest Palindrome 区间dp 题意: 给你长度为m的字符串,其中有n种字符,每种字符都有两个值,分别是插入这个字符的代价,删除这个字符的代价,让你求将原先给出的那串字符变成一个回文串的最小代价. M<=2000 设 dp[i][j] 为区间 i~j 的回文串的最小代价 现在考虑怎样从别的状态转移到 区间i~j 三种情况 首先 str[i]==str[j] 那么 dp[i][j] = dp[i+1][j-1] 其次 (i+1)~j 是一个回文串 dp[i][

POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思路:比较简单的区间DP,令dp[i][j]表示使[i,j]回文的最小花费.则得到状态转移方程: dp[i][j]=min(dp[i][j],min(add[str[i]-'a'],del[str[i]-'a'])+dp[i+1][j]); dp[i][j]=min(dp[i][j],min(add[

POJ 3280 Cheapest Palindrome(区间DP)

 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6894   Accepted: 3344 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each co

poj 3280 Cheapest Palindrome(区间DP)

Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5995   Accepted: 2922 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow a

POJ 3280 Cheapest Palindrome ( 区间DP &amp;&amp; 经典模型 )

题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价. 分析 :  原始模型 ==> 题意和本题差不多,有添和删但是并无代价之分,要求最少操作几次才能是其变成回文串 ① 其实细想之后就会发现如果没有代价之分的话删除和增添其实是一样的,那么除了原串原本拥有的最长回文串不用进行考虑处理,其他都需要进行删除或者增添来使得原串变成回文串,所以只要对原串 S 和其反向串 S' 找出两者的最长公共子串长度 L 再用总长减去 L 即可 ②

POJ 3280 —— Cheapest Palindrome

题目:http://poj.org/problem?id=3280 经典的区间DP #include <iostream> #include <cstdio> #include <cstring> #include <string> using namespace std; char s[2005], ch[2]; int cost[26]; int dp[2005][2005]; int main () { int n, m, c1, c2; scanf(

POJ 3280 Cheapest Palindrome

区间DP. dp[i][j]表示把区间[i,j]变成回文的最小花费. #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; long long INF=999999999999; const int maxn=2000+10; int q,n; char s[maxn]; long long cost[30]; long long