等角投影中,没有消失点,观察者的目光始终是平行的,投影方向与坐标轴的角度是固定值,虽然这样看上去略有失真,但是总体来讲立体感还是很明显的,重要的是:不管你把等角投影所形成的立体图形放在屏幕上哪一个位置,看上去都是相同的。
原书作者还给出了一个演示,用于帮助大家理解:在线演示
很明显:一个立方体的(正方形)顶部面,在经过等角投影后,在屏幕上会发生形变,成为一个菱形。(点击刚才的在线演示中的true isometric按钮,观察front视图中立方体的顶部)
上图是正方形经过标准等角投影后得到的菱形,其左右侧的角度为60度,通过计算可以得到长宽比例为1.73,但是这个比例通常在计算时,会弄出很多小数位,而且绘图师们也比较烦这个比例(因为用ps等软件画图时,同样也要设置长或宽为小数位才能保证这个比例)
所以在实际情况中,更常用的是"二等角"来代替"等角"(点击刚才的在线演示中的dimetric按钮,观察front视图中立方体的顶部)
可以看出,“二等角投影”形成的菱形要比“等角投影”更扁一些,但这种图形的宽/高比例正好是2,处理起来很方便,也好记忆。
有了上面这些基础,就可以来做些正经事儿了,思考一个问题:在常规3D空间中的图形,经过二等角投影(为方便起见,以下把二等角投影也通称为等角投影)后,要经过怎样的计算(或转换),才能得到最终的图形呢?
有鉴于任何几何图形,总是由若干个点连接而成的,我们先来定义一个常规的Point3D类:
1 2 3 4 5 6 7 8 9 10 11 12 |
|
所以上面的问题也可以简化为:等角空间中3D坐标点,如何转换为电脑屏幕上的2D坐标点?(或者反过来转换?)
转化公式: x1 = x - z y1 = y * 1.2247 + (x + z) * 0.5 z2 = (x + z) * 0.866 - y * 0.707 --用于层深排序,可以先不管
上面的公式可以把等角空间中的坐标点,转化为屏幕空间上的坐标点。(好奇心强烈的童鞋们,自己去看原书上的推导过程吧,我建议大家把这它当成定理公式记住就好,毕竟我们不是在研究数学)
为了方便以后重用,可以把这个公式封装到类IsoUtil.as里
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
用代码来画一个等角图形,测试上面的代码是否正确
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|