追寻伯利恒二叉树 -- 不用栈不用递归

http://www.acmerblog.com/inorder-tree-traversal-without-recursion-and-without-stack-5988.html

用叶子节点的空指针来记录当前节点的位置,然后一旦遍历到了叶子节点,发现叶子节点的右指针指向的是当前节点,那么就认为以当前节点的左子树已经遍历完成。

以inorder为例,初始化当前节点为root,它的遍历规则如下:

  • 如果当前节点为空,程序退出。
  • 如果当前节点非空,
    • 如果当前节点的左儿子为空,那么输出当前节点,当前节点重置为当前节点的右儿子。
    • 如果当前节点的左儿子非空,找到当前节点左子树的最右叶子节点(此时最右节点的右儿子有两种情况,一种是指向当前节点,一种是为空,你也许感到奇怪,右节点的右儿子怎么可能非空,注意,这里的最右叶子节点只带的是原树中的最右叶子节点。),若其最右叶子节点为空,令其指向当前节点,将当前节点重置为其左儿子,若其最右节点指向当前节点,输出当前节点,将当前节点重置为当前节点的右儿子,并恢复树结构,即将最右节点的右节点再次设置为NULL。
#include<stdio.h>
#include<stdlib.h>

struct tNode
{
   int data;
   struct tNode* left;
   struct tNode* right;
};

void MorrisTraversal(struct tNode *root)
{
  struct tNode *current,*pre;

  if(root == NULL)
     return; 

  current = root;
  while(current != NULL)
  {
    if(current->left == NULL)
    {
      printf(" %d ", current->data);
      current = current->right;
    }
    else
    {
      /* 找到current的前驱节点 */
      pre = current->left;
      while(pre->right != NULL && pre->right != current)
        pre = pre->right;

      /* 将current节点作为其前驱节点的右孩子 */
      if(pre->right == NULL)
      {
        pre->right = current;
        current = current->left;
      }

      /* 恢复树的原有结构,更改right 指针 */
      else
      {
        pre->right = NULL;
        printf(" %d ",current->data);
        current = current->right;
      } /* End of if condition pre->right == NULL */
    } /* End of if condition current->left == NULL*/
  } /* End of while */
}

struct tNode* newtNode(int data)
{
  struct tNode* tNode = (struct tNode*)
                       malloc(sizeof(struct tNode));
  tNode->data = data;
  tNode->left = NULL;
  tNode->right = NULL;

  return(tNode);
}

/* 测试*/
int main()
{

  /* 构建树结构如下:
            1
          /           2      3
      /      4     5
  */
  struct tNode *root = newtNode(1);
  root->left        = newtNode(2);
  root->right       = newtNode(3);
  root->left->left  = newtNode(4);
  root->left->right = newtNode(5); 

  MorrisTraversal(root);
   return 0;
}
时间: 2024-10-11 11:39:56

追寻伯利恒二叉树 -- 不用栈不用递归的相关文章

算法9---二叉树的遍历不用栈和递归

二叉树的遍历不用栈和递归 转自:ACM之家 http://www.acmerblog.com/inorder-tree-traversal-without-recursion-and-without-stack-5988.html 我们知道,在深度搜索遍历的过程中,之所以要用递归或者是用非递归的栈方式,参考二叉树非递归中序遍历,都是因为其他的方式没法记录当前节点的parent,而如果在每个节点的结构里面加个parent 分量显然是不现实的,那么Morris是怎么解决这一问题的呢?好吧,他用得很巧

16、蛤蟆的数据结构笔记之十六栈的应用之栈与递归之汉诺塔问题

16.蛤蟆的数据结构笔记之十六栈的应用之栈与递归之汉诺塔问题 本篇名言:"人生的价值,并不是用时间,而是用深度去衡量的." 继续栈与递归应用,汉诺塔问题. 欢迎转载,转载请标明出处: 1.  汉诺塔问题 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一

二叉树遍历的非递归实现

二叉树的遍历可以使用递归的方式实现,并且代码非常简单.而递归实际就是函数反复的调用本身,在栈上反复压栈.所以我们可以用栈来模拟实现递归. 1.前序遍历 (1)栈是后进先出的特点,所以无条件的把栈的根节点入栈,在把栈顶元素输出之后依次把右孩子,左孩子压入栈中. 代码如下: void _PrevOrder(Node * root) { stack<Node*> s; if (root == NULL) { return; } s.push(root);//将第一个元素入栈 while (!s.em

数据结构二叉树——建立二叉树、中序递归遍历、非递归遍历、层次遍历

数据结构二叉树-- 编写函数实现:建立二叉树.中序递归遍历.借助栈实现中序非递归遍历.借助队列实现层次遍历.求高度.结点数.叶子数及交换左右子树. ("."表示空子树) #include<stdio.h> #include<stdlib.h> //***********二叉树链表节点结构 typedef char DataType; typedef struct Node {  DataType data;  struct Node*LChild;  struc

二叉树三种遍历递归及非递归实现(Java)

import java.util.Stack; //二叉树三种遍历递归及非递归实现(Java) public class Traverse { /******************定义二叉树**************************/ private final int MAX_SIZE = 10; //链式存储 public static class BinaryTreeNode { int mValue; BinaryTreeNode mLeft; BinaryTreeNode

java栈和递归的关系

最近看了Mark.Allen.Weiss的算法与数据结构,看到了里面讲述的表.栈和和队列,结合最近工程用的比较多的递归运算.所以这里讲一下递归 因为在年初的时候看了<大话数据结果>(推荐看一下),这里先讲一下概念:函数的递归调用和普通函数调用是一样的,当程序执行到某个函数时,将这个函数进行入栈操作,入栈之前主要做三件事 1.把入参,返回地址等返回给被调用函数保存 2.分配栈空间 3.准备被调用 出栈也一样: 1.保存运算结果 2.消除栈空间 3.把运算结果放到栈空间出口 所以递归这种存储某些数

Java学习(十八):二叉树的三种递归遍历

二叉树的三种递归遍历: 1 public class StudentNode 2 { 3 private String name; 4 5 private StudentNode leftNode; 6 7 private StudentNode rightNode; 8 9 public String getName() 10 { 11 return name; 12 } 13 14 public void setName(String name) 15 { 16 this.name = na

深度优先搜索入门:POJ1164城堡问题(递归、用栈模拟递归)

将问题的各状态之间的转移关系描述为一个图,则深度优先搜索遍历整个图的框架为:Dfs(v) {if( v 访问过)return;将v标记为访问过;对和v相邻的每个点u: Dfs(u);}int main() {while(在图中能找到未访问过的点 k) Dfs(k);} 例题: POJ1164 The Castle Description 1 2 3 4 5 6 7 ############################# 1 # | # | # | | # #####---#####---#-

15、蛤蟆的数据结构笔记之十五栈的应用之栈与递归之八皇后问题

15.蛤蟆的数据结构笔记之十五栈的应用之栈与递归之八皇后问题 本篇名言:"人的一生应当这样度过:当回忆往事的时候,他不致于因为虚度年华而痛悔,也不致于因为过去的碌碌无为而羞愧:在临死的时候,他能够说:"我的整个生命和全部精力,都已经献给世界上最壮丽的事业--为人类的解放而斗争." 继续递归问题,本次是经典的八皇后问题: 欢迎转载,转载请标明出处: 1.  八皇后问题 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出