Problem Description
You are given a sequence of n numbers a0,..., an-1. A cyclic shift by k positions (0<=k<=n-1) results in the following sequence: ak ak+1,..., an-1, a0, a1,...,
ak-1. How many of the n cyclic shifts satisfy the condition that the sum of the fi rst i numbers is greater than or equal to zero for all i with 1<=i<=n?
Input
Each test case consists of two lines. The fi rst contains the number n (1<=n<=106), the number of integers in the sequence. The second contains n integers a0,..., an-1(-1000<=ai<=1000) representing
the sequence of numbers. The input will finish with a line containing 0.
Output
For each test case, print one line with the number of cyclic shifts of the given sequence which satisfy the condition stated above.
Sample Input
3 2 2 1 3 -1 1 1 1 -1 0
Sample Output
3 2 0
通过这个题才对单调队列有一点了解
题意:一个数列,每一次把第一个数放到尾部,判断这个数列对于任意的 i (1<=i<=n) 是否都满足 sum[i]>=0,如果满足ans++,求最大的ans
思路:先把串加倍,队列需要维护长度为n的序列中的最小值放在队首
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<stack> #include<vector> #include<set> #include<map> #define L(x) (x<<1) #define R(x) (x<<1|1) #define MID(x,y) ((x+y)>>1) #define eps 1e-8 typedef __int64 ll; #define fre(i,a,b) for(i = a; i < b; i++) #define free(i,a,b) for(i = a; i > =b;i--) #define mem(t, v) memset ((t) , v, sizeof(t)) #define ssf(n) scanf("%s", n) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define bug pf("Hi\n") using namespace std; #define INF 0x3f3f3f3f #define N 2000005 int sum[N],a[N],n; int que[N],tail,head; void inque(int i) { while(head<tail&&sum[i]<sum[que[tail-1]]) tail--; que[tail++]=i; } void outque(int i) { if(i-n>=que[head]) head++; } int main() { int i,j; while(~sf(n),n) { fre(i,1,n+1) { sf(a[i]); sum[i]=sum[i-1]+a[i]; } fre(i,n+1,n*2+1) sum[i]=sum[i-1]+a[i-n]; tail=head=0; int ans=0; fre(i,1,n) inque(i); fre(i,n,n*2) { inque(i); outque(i); if(sum[que[head]]>=sum[i-n]) ans++; } pf("%d\n",ans); } return 0; }