《图论资料》最大权闭合子图

首先我们由一道题来引入,见 [线性规划与网络流24题 2] 太空飞行计划问题 。

这道题中,实验依赖于仪器,而实验和仪器都有权值,且仪器为负,实验为正。

这里闭合图的概念就很好引出了。在一个图中,我们选取一些点构成集合,记为V,且集合中的出边(即集合中的点的向外连出的弧),所指向的终点(弧头)也在V中,则我们称V为闭合图。最大权闭合图即在所有闭合图中,集合中点的权值之和最大的V,我们称V为最大权闭合图。

上图中闭合图有

{5}、{2,5}、{4,5}

{2,4,5}、{3,4,5}

{1,2,3,4,5}、{1,2,4,5}

最大权闭合图为{3,4,5}。

针对本题而言,我们将实验与仪器间连一条有向边,实验为起点(弧尾),仪器为终点(弧头)。则如果我们选择一个闭合图,那么这个闭合图中包含的实验所需要的仪器也最这个闭合图里。而最大权闭合图即为题目的解。

了解了最大权闭合图的概念,接下来我们就需要知道如何求最大权闭合图。

首先我们将其转化为一个网络(现在不要问为什么,接下来会证明用网络可以求解)。构造一个源点S,汇点T。我们将S与所有权值为正的点连一条容量为其权值的边,将所有权值为负的点与T连一条容量为其权值的绝对值的边,原来的边将其容量定为正无穷。

上图即被转化为如左图网络。

首先引入结论,最小割所产生的两个集合中,其源点S所在集合(除去S)为最大权闭合图,接下来我们来说明一些结论。

  • 证明:最小割为简单割。

引入一下简单割的概念:割集的每条边都与S或T关联。(请下面阅读时一定分清最小割与简单割,容易混淆)

那么为什么最小割是简单割呢?因为除S和T之外的点间的边的容量是正无穷,最小割的容量不可能为正无穷。所以,得证。

  • 证明网络中的简单割与原图中闭合图存在一一对应的关系。(即所有闭合图都是简单割,简单割也必定是一个闭合图)。

证明闭合图是简单割:如果闭合图不是简单割(反证法)。那么说明有一条边是容量为正无穷的边,则说明闭合图中有一条出边的终点不在闭合图中,矛盾。

证明简单割是闭合图:因为简单割不含正无穷的边,所以不含有连向另一个集合(除T)的点,所以其出边的终点都在简单割中,满足闭合图定义。得正。

  • 证明最小割所产生的两个集合中,其源点S所在集合(除去S)为最大权闭合图。

首先我们记一个简单割的容量为C,且S所在集合为N,T所在集合为M。

则C=M中所有权值为正的点的权值(即S与M中点相连的边的容量)+N中所有权值为负的点权值的绝对值(即N中点与T中点相连边的容量)。记(C=x1+y1);(很好理解,不理解画一个图或想象一下就明白了)。

我们记N这个闭合图的权值和为W。

则W=N中权值为正的点的权值-N中权值为负的点的权值的绝对值。记(W=x2-y2);

则W+C=x1+y1+x2-y2。

因为明显y1=y2,所以W+C=x1+x2;

x1为M中所有权值为正的点的权值,x2为N中权值为正的点的权值。

所以x1+x2=所有权值为正的点的权值之和(记为TOT).

所以我们得到W+C=TOT.整理一下W=TOT-C.

到这里我们就得到了闭合图的权值与简单割的容量的关系。

因为TOT为定值,所以我们欲使W最大,即C最小,即此时这个简单割为最小割,此时闭合图为其源点S所在集合(除去S)。得正。

至此,我们就将最大权闭合图问题转化为了求最小割的问题。求最小割用最小割容量=最大流,即可将问题转化为求最大流的问题。

PS:本文转自互联网

时间: 2024-11-06 19:32:00

《图论资料》最大权闭合子图的相关文章

HDU 5855 Less Time, More profit(最大权闭合子图)

题目链接:点击打开链接 思路: 最大权闭合子图的裸题,  给个学习资料:点击打开链接 当结点即有正权值又有负数权值时, 怎么求任意闭合子图的最大和呢?  只要求出最小割E, 用总的正数权值TOT 减去E就是答案. 细节参见代码: #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<string> #include<vector&

刷题总结——太空飞行计划(最大权闭合子图用最大流解决)

题目: 题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合 E={E1,E2,-,Em},和进行这些实验需要使用的全部仪器的集合 I={I1, I2,-In}. 实验 Ej 需要用到的仪器是 I 的子集 Rj∈I.配置仪器 Ik 的费用为 Ck 美元.实验 Ej 的赞助商已同意为该实验结果支付 Pj 美元.W 教授的任务是找出一个有效算法, 确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的

我和最大权闭合子图

第一次接触最大权闭合子图大概是2017年3月27号星期一,那段时间有5个同学(ZJC/LKQ/LWD/WJJ/...)去了湖南师大附中听PTY.BK他们讲课,因为我没有去Hfu一直很怪罪.后来安排我和LXY在70去电子科大之前去考一周的试,上午LXY的Mom接送,下午我们坐metro到世纪城再让LXY的Mom送回学校上晚自习.那一天我去70,T1是分治Floyd,T2是轮廓线DP,T3是一道最大权闭合子图(后来知道是BZOJ 3774 最优选择).那时我只会Dinic的模板,我的初高中学长Ana

【暖*墟】#网络流# 最大权闭合子图

[相关概念详解] 闭合图:有向图的一个点集,且这个点集的所有出边仍然指向该点集. 最大权闭合图:(每一个点有一个权值)在所有的合法闭合图中,点权之和最大的图. 处理问题:权值有正有负,重复选只算一次,选择有相互关联性 的问题. 首先有一个有向连通图(闭合图),每个点带有一个权值,例如: 造出一个超级源点S和一个超级汇点T,把S连边到所有带有正权的点上,每条边的容量是这个点的权: 把所有带负权的点连边到T,每条边的容量是这个点的权的相反数(正值).原来的边的容量设成无限大. 所有的点按权值的正负连

HDU5772 String problem(最大权闭合子图)

题目..说了很多东西 官方题解是这么说的: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分) 第二类:原串中的n个点每个点拆出一个点,第i个点权值为 –a[s[i]] (表示要花费) 第三类:对于10种字符拆出10个点,每个点的权值为  -(b[x]-a[x]) 那么我们可以得到一个关系图 ,对于第一类中的点Pij,如果想要选择Pij,你就必须要选中第二类中的点i和j,对于第二类中的点如果你想选中第i个点,其对应的字

[BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以考虑最大权闭合子图 假设a与b之间有权值为c的边(根据题意是双向边) 那么我们可以建一个新节点,点的权值为c,并指向a点和b点(单向),同时断掉原本a,b之间的双向边,a,b的点的权值是它们的花费(负的) 那么对于原问题就转化成了求最大权闭合子图的问题了 ——————————————————————

NOI2006 最大获利(最大权闭合子图)

codevs 1789 最大获利 2006年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目描述 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是 挑战.THU 集团旗下的 CS&T 通讯公司在新一代通讯技术血战的前夜,需要做 太多的准备工作,仅就站址选择一项,就需要完成前期市场研究.站址勘测.最 优化等项目. 在前期市场调查和站址勘测之后,公司得到了一共 N 个可以作为通讯信号中 转站的地址,而由于这些地址的地理位置差异,在不同

hiho一下 第119周 #1398 : 网络流五&#183;最大权闭合子图 【最小割-最大流--Ford-Fulkerson 与 Dinic 算法】

#1398 : 网络流五·最大权闭合子图 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编号1..M),邀请编号为i的同学来参加班级建设活动需要消耗b[i]的活跃值. 每项活动都需要某些学生在场才能够进行,若其中有任意一个学生没有被邀请,这项活动就没有办法进行. 班级建设的活

hdu 3996 Gold Mine 最大权闭合子图

Gold Mine Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2374    Accepted Submission(s): 514 Problem Description Long long ago, there is a gold mine.The mine consist of many layout, so some are

CF 103E Buying Sets 最大权闭合子图,匹配 难度:4

http://codeforces.com/problemset/problem/103/E 这道题首先一看就很像是最大权闭合子图,但是我们可以认为现在有两种点,数字和集合点,我们需要消除数字点的影响才能直接运用最大权闭合子图. 进行二分匹配,使得每个集合都唯一匹配一个数字,买下一个集合点,则意味着该集合中所有数字的对应匹配集合点都要被买下,也就是可以建立一个新图,其中某个集合点向对应数字代表的集合点连单向边,可以证明对于任意权闭合子图中的集合点,集合中所有数字的对应匹配集合点都已经在这个权闭合