协方差、协方差矩阵定义与计算

转自:http://blog.csdn.net/xw20084898/article/details/42077141

协方差的意义和计算公式

学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。

均值:


标准差:


方差:


很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,

而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。

而方差则仅仅是标准差的平方。

为什么需要协方差?

上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:

来度量各个维度偏离其均值的程度,标准差可以这么来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。

从协方差的定义上我们也可以看出一些显而易见的性质,如:

协方差多了就是协方差矩阵

上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算

个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。


Matlab协方差实战

上面涉及的内容都比较容易,协方差矩阵似乎也很简单,但实战起来就很容易让人迷茫了。必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。这个我将结合下面的例子说明,以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数(蓝色部分为Matlab代码)。

首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。


1


MySample = fix(rand(10,3)*50)

根据公式,计算协方差需要计算均值,那是按行计算均值还是按列呢,我一开始就老是困扰这个问题。前面我们也特别强调了,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。样本矩阵的每行是一个样本,每列为一个维度,所以我们要按列计算均值。为了描述方便,我们先将三个维度的数据分别赋值:


23


dim1 = MySample(:,1);dim2 = MySample(:,2);dim3 = MySample(:,3);

计算dim1与dim2,dim1与dim3,dim2与dim3的协方差:


123


sum( (dim1-mean(dim1)) .* (dim2-mean(dim2)) ) / ( size(MySample,1)-1 ) % 得到  74.5333sum( (dim1-mean(dim1)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到  -10.0889sum( (dim2-mean(dim2)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到  -106.4000

搞清楚了这个后面就容易多了,协方差矩阵的对角线就是各个维度上的方差,下面我们依次计算:


123


std(dim1)^2 % 得到   108.3222std(dim2)^2 % 得到   260.6222std(dim3)^2 % 得到   94.1778

这样,我们就得到了计算协方差矩阵所需要的所有数据,调用Matlab自带的cov函数进行验证:


1


cov(MySample)

把我们计算的数据对号入座,是不是一摸一样?

Update:今天突然发现,原来协方差矩阵还可以这样计算,先让样本矩阵中心化,即每一维度减去该维度的均值,使每一维度上的均值为0,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可。其实这种方法也是由前面的公式通道而来,只不过理解起来不是很直观,但在抽象的公式推导时还是很常用的!同样给出Matlab代码实现:


12


X = MySample - repmat(mean(MySample),10,1);    % 中心化样本矩阵,使各维度均值为0C = (X‘*X)./(size(X,1)-1);

总结

理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了~

时间: 2024-10-10 10:58:22

协方差、协方差矩阵定义与计算的相关文章

协方差矩阵概念及计算

理解协方差矩阵的关键就在于牢记它计算的是不同维度之间的协方差,而不是不同样本之间,拿到一个样本矩阵,我们最先要明确的就是一行是一个样本还是一个维度,心中明确这个整个计算过程就会顺流而下,这么一来就不会迷茫了 浅谈协方差矩阵 今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵. 统计学的基本概念 学过概率统计的孩子都知道,统计里最基本的概念就是样

MathCAD操作tips:算式输入、变量定义与计算

算式输入tips: 1. 数字与符号相乘,输入时不必手动输入乘号(“*”). 2. 以下有助于算式的可视化:a. 使用Math工具栏输入,并合理使用tab键:b. 合理使用空格键. 3. 输入开根号时,可用快捷键“\”键:输入绝对值符号时,可用快捷键shift+\. 4. 当光标在算式上时,选择format菜单->result可以选择结果的显示形式,如分式.科学计数法.指定小数位数等. 5. “=”号求解算式,光标在算式任何位置时都可以输入. 6. log的底数为10,ln的底数为e. 7. 需

PCA 协方差矩阵特征向量的计算

人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或者A'A的特征值,原矩阵和其转置矩阵的特征值是一样的,只是特征向量不一样. 假如我们的数据按行存放,A是m*n的矩阵,n>>m,m是样本个数,n是维数,则协方差矩阵应该是A'A,A'A是n*n维的一个矩阵,这个矩阵非常大,不利于求特征值和特征向量,所以先求AA'的特征值,它是一个m*m维的矩阵.

方差、标准差和协方差三者之间的定义与计算

理解三者之间的区别与联系,要从定义入手,一步步来计算,同时也要互相比较理解,这样才够深刻. 方差 方差是各个数据与平均数之差的平方的平均数.在概率论和数理统计中,方差(英文Variance)用来度量随机变量和其数学期望(即均值)之间的偏离程度.在许多实际问题中,研究随机变量和均值之间的偏离程度有着很重要的意义. 标准差 方差开根号. 协方差 在概率论和统计学中,协方差用于衡量两个变量的总体误差.而方差是协方差的一种特殊情况,即当两个变量是相同的情况. 可以通俗的理解为:两个变量在变化过程中是否同

均值、方差、协方差等定义与基本运算

一.均值 定义: 设P(x)是一个离散概率分布函数自变量的取值范围是.那么其均值被定义为: 设P(x)是一个连续概率分布函数 ,那么他的均值是: 性质: 1.线性运算: 期望服从先行性质,因此线性运算的期望等于期望的线性运算: 我们可以把它推广到任意一般情况: 2.函数的期望: 设f(x)是x的函数,则f(x)的期望为: 离散: 连续: 3.乘积的期望: 一般来说,乘积的期望不等于期望的乘积,除非变量相互独立.因此,如果x和y相互独立,则 期望的运算构成了统计量的运算基础,因为方差.协方差等统计

jsp页面根据当前时间和定义时间差计算动态倒计时

http://www.jb51.net/article/74140.htm var maxtime =1000*60; //半个小时,按秒计算,自己调整!    second=maxtime/1000;    // 写一个方法,将秒数专为天数    var toDays = function(){     var s = second % 60; // 秒     var mi = (second - s) / 60 % 60; // 分钟    var h = ((second - s) /

一个数值计算中通常很有用的数值的定义和计算

matlab中直接用eps,默认是针对double双精度类型的. 在微软的msdn中是这么提的: numeric_limits::epsilon The function returns the difference between 1 and the smallest value greater than 1 that is representable for the data type. The difference between 1 and the smallest value grea

[转]浅谈协方差矩阵(牢记它的计算是不同维度之间的协方差,而不是不同样本之间。)

注意:方差就是方差:方差的平方就是方差的平方.有的时候以为方差就是方差的平方. cov11 = sum((dim1-mean(dim1)).*(dim1-mean(dim1)))/(size(MySample,1)-1) cov11 = 296.7222 >> std(dim1) ans = 17.2256 >> std(dim1).^2 ans = 296.7222 一.统计学的基本概念 统计学里最基本的概念就是样本的均值.方差.标准差.首先,我们给定一个含有n个样本的集合,下面

[zz]计算 协方差矩阵

http://www.cnblogs.com/chaosimple/p/3182157.html http://blog.csdn.net/goodshot/article/details/8611178 一.统计学的基本概念 统计学里最基本的概念就是样本的均值.方差.标准差.首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述: 均值: 标准差: 方差: 均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均. 以这两个