关于Python中的yield(转载)

您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?

我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。

如何生成斐波那契數列

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

清单 1. 简单输出斐波那契數列前 N 个数
 def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

执行 fab(5),我们可以得到如下输出:

 >>> fab(5)
 1
 1
 2
 3
 5

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

清单 2. 输出斐波那契數列前 N 个数第二版
 def fab(max):
    n, a, b = 0, 0, 1
    L = []
    while n < max:
        L.append(b)
        a, b = b, a + b
        n = n + 1
    return L

可以使用如下方式打印出 fab 函数返回的 List:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:

清单 3. 通过 iterable 对象来迭代
 for i in range(1000): pass

会导致生成一个 1000 个元素的 List,而代码:

 for i in xrange(1000): pass

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本
 class Fab(object): 

    def __init__(self, max):
        self.max = max
        self.n, self.a, self.b = 0, 0, 1 

    def __iter__(self):
        return self 

    def next(self):
        if self.n < self.max:
            r = self.b
            self.a, self.b = self.b, self.a + self.b
            self.n = self.n + 1
            return r
        raise StopIteration()

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版
 def fab(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        # print b
        a, b = b, a + b
        n = n + 1 

‘‘‘

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5):
 ...     print n
 ...
 1
 1
 2
 3
 5

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程
 >>> f = fab(5)
 >>> f.next()
 1
 >>> f.next()
 1
 >>> f.next()
 2
 >>> f.next()
 3
 >>> f.next()
 5
 >>> f.next()
 Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
 StopIteration

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断
 >>> from inspect import isgeneratorfunction
 >>> isgeneratorfunction(fab)
 True

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例
 >>> import types
 >>> isinstance(fab, types.GeneratorType)
 False
 >>> isinstance(fab(5), types.GeneratorType)
 True

fab 是无法迭代的,而 fab(5) 是可迭代的:

 >>> from collections import Iterable
 >>> isinstance(fab, Iterable)
 False
 >>> isinstance(fab(5), Iterable)
 True

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

 >>> f1 = fab(3)
 >>> f2 = fab(5)
 >>> print ‘f1:‘, f1.next()
 f1: 1
 >>> print ‘f2:‘, f2.next()
 f2: 1
 >>> print ‘f1:‘, f1.next()
 f1: 1
 >>> print ‘f2:‘, f2.next()
 f2: 1
 >>> print ‘f1:‘, f1.next()
 f1: 2
 >>> print ‘f2:‘, f2.next()
 f2: 2
 >>> print ‘f2:‘, f2.next()
 f2: 3
 >>> print ‘f2:‘, f2.next()
 f2: 5

回页首

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

回页首

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子
 def read_file(fpath):
    BLOCK_SIZE = 1024
    with open(fpath, ‘rb‘) as f:
        while True:
            block = f.read(BLOCK_SIZE)
            if block:
                yield block
            else:
                return

以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。

注:本文的代码均在 Python 2.7 中调试通过

本文来源:http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/

时间: 2024-10-21 19:09:24

关于Python中的yield(转载)的相关文章

关于Python中的yield

关于Python中的yield http://www.cnblogs.com/tqsummer/archive/2010/12/27/1917927.html http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ 一.迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表.元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器 迭代器是一个实现了迭代器协议

python中的yield

例如这个函数 def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # print b a, b = b, a + b n = n + 1 简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab

【转载】关于Python中的yield

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor). 一.迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表.元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器 迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发 StopIteration.任何这类的对象在Python中都可以用for循

python中的yield(转载)

body { font-family: 微软雅黑,"Microsoft YaHei", Georgia,Helvetica,Arial,sans-serif,宋体, PMingLiU,serif; font-size: 10.5pt; line-height: 1.5; } html, body { } h1 { font-size:1.5em; font-weight:bold; } h2 { font-size:1.4em; font-weight:bold; } h3 { fon

python中的yield函数

简单讲,yield的作用就是把一个函数变成一个generator,带有yield的函数不再是一个普通的函数,Python解释器会将其视为一个generator,调用fab(5)斐波拉契函数不会执行fab函数,而是返回一个iterable对象!在for循环执行时,每次循环都会执行fab函数内部的代码,执行到yeild b时,fab函数就返回一个迭代值,下一次迭代时,代码从yield b的下一条语句继续执行,而函数的本地变量看起来和上次终端执行前是完全一样的,于是函数继续执行,直到再次遇到yield

关于Python中的yield的理解

生成器:yield表达式构成的函数就是生成器:每一个生成器都是一个迭代器(但是迭代器不一定是生成器).return就是迭代器: yield的功能类似于return,不同之处在于它返回的是生成器. 什么是生成器,你可以通俗的认为,在一个函数中,使用了yield来代替return的位置的函数,就是生成器. 它不同于函数的使用方法是:函数使用return来进行返回值,每调用一次,返回一个新加工好的数据返回给你:yield不同,它会在调用生成器的时候,把数据生成object,然后当你需要用的时候,要用n

关于python 中的偏函数转载

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function).要注意,这里的偏函数和数学意义上的偏函数不一样. 在介绍函数参数的时候,我们讲到,通过设定参数的默认值,可以降低函数调用的难度.而偏函数也可以做到这一点.举例如下: int()函数可以把字符串转换为整数,当仅传入字符串时,int()函数默认按十进制转换:?12    >>> int('12345')12345 但int()函数还提供额外的base参数,默认值为10.如果传入b

python中的线程(zz)

引言 一.线程 1.1 普通的多线程1.2 自定义线程类1.3 线程锁1.3.1 未使用锁1.3.2 普通锁Lock和RLock1.3.3 信号量(Semaphore)1.3.4 事件(Event)1.3.5 条件(condition)1.3 全局解释器锁(GIL)1.4 定时器(Timer)1.5 队列1.5.1 Queue:先进先出队列1.5.2 LifoQueue:后进先出队列1.5.3 PriorityQueue:优先级队列1.5.4 deque:双向队列1.6 生产者消费者模型1.7

python &quot;yield&quot;(转载)

转载地址:http://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ 您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ? 我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念. 如何生成斐波那契數列 斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到.用计算