poj 2195 Going Home(最小费最大流)

poj 2195 Going Home

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man.

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a ‘.’ means an empty space, an ‘H’ represents a house on that point, and am ‘m’ indicates there is a little man on that point.

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of ‘H’s and ‘m’s on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2

.m

H.

5 5

HH..m

…..

…..

…..

mm..H

7 8

…H….

…H….

…H….

mmmHmmmm

…H….

…H….

…H….

0 0

Sample Output

2

10

28

题目大意:给你一个N × M的含有“H”, “m”, “.”的二维图。“H”代表HOME, “m”代表man,“.”代表空。man到HOME的距离为两点坐标的X坐标之差的绝对值加上Y坐标之差的绝对值。man的数量与HOME的数量相同。现在,问,要是所有的man都回到HOME走的最短的路程总和为多少。

解题思路:还是建图的问题。根据这张二位的图,建一张流图。设置一个超级源点,连向所有的man,容量为1。设置一个超级汇点,使所有的HOME都连向超级汇点,容量为1。把所有的HOME都拆成两个点,连接的容量为1,每个房子只能住一个人。每个man连向所有的房子,容量为1,费用为二维图上,man点到HOME点的距离。图建完以后,求最小费最大流。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <queue>
using namespace std;

const int N = 505;
const int NN = 105;
const int MM = 15005;
const int INF = 0x3f3f3f3f;
const int OF = 100;
const int FIN = 500;
typedef long long ll;

int n, m, cntH, cntM, s, t;
struct Node{
    int x, y;
}H[NN], M[NN];
char gra[NN][NN];
int pre[N], inq[N];
ll a[N], d[N];
struct Edge{
    int from, to;
    ll cap, flow;
    ll cos;
};

vector<Edge> edges;
vector<int> G[MM];

void init() {
    for (int i = 0; i < MM; i++) G[i].clear();
    edges.clear();
}

void addEdge(int from, int to, ll cap, ll flow, ll cos) {
    edges.push_back((Edge){from, to, cap, 0, cos});
    edges.push_back((Edge){to, from, 0, 0, -cos});
    int m = edges.size();
    G[from].push_back(m - 2);
    G[to].push_back(m - 1);
}

int getDis(int x, int y) {
    return abs(M[x].x - H[y].x) + abs(M[x].y - H[y].y);
}

void input() {
    cntH = cntM = 0;
    for (int i = 0; i < n; i++) scanf("%s", gra[i]);
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            if (gra[i][j] == ‘H‘) {
                H[cntH].x = i;
                H[cntH++].y = j;
            } else if (gra[i][j] == ‘m‘) {
                M[cntM].x = i;
                M[cntM++].y = j;
            }
        }
    }
    for (int i = 1; i <= cntH; i++) {
        addEdge(i, i + OF, 1, 0, 0);
    }
    for (int i = 1; i <= cntM; i++) {
        for (int j = 1; j <= cntH; j++) {
            addEdge(i + 2 * OF, j, 1, 0, getDis(i - 1, j - 1));
        }
    }
    for (int i = 1; i <= cntM; i++) {
        addEdge(0, i + 2 * OF, 1, 0, 0);
    }
    for (int i = 1; i <= cntH; i++) {
        addEdge(i + OF, t, 1, 0, 0);
    }
}

int BF(int s, int t, ll& flow, ll& cost) {
    queue<int> Q;
    memset(inq, 0, sizeof(inq));
    memset(a, 0, sizeof(a));
    memset(pre, 0, sizeof(pre));
    for (int i = 0; i < N; i++) d[i] = INF;
    d[s] = 0;
    a[s] = INF;
    inq[s] = 1;
    int flag = 1;
    pre[s] = 0;
    Q.push(s);
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        inq[u] = 0;
        for (int i = 0; i < G[u].size(); i++) {
            Edge &e = edges[G[u][i]];
            if (e.cap > e.flow && d[e.to] > d[u] + e.cos) {
                d[e.to] = d[u] + e.cos;
                a[e.to] = min(a[u], e.cap - e.flow);
                pre[e.to] = G[u][i];
                if (!inq[e.to]) {
                    inq[e.to] = 1;
                    Q.push(e.to);
                }
            }
        }
        flag = 0;
    }
    if (d[t] == INF) return 0;
    flow += a[t];
    cost += (ll)d[t] * (ll)a[t];
    for (int u = t; u != s; u = edges[pre[u]].from) {
        edges[pre[u]].flow += a[t];
        edges[pre[u]^1].flow -= a[t];
    }
    return 1;
}

int MCMF(int s, int t, ll& cost) {
    ll flow = 0;
    cost = 0;
    while (BF(s, t, flow, cost));
    return flow;
}

int main() {
    while (scanf("%d %d\n", &n, &m) == 2, n, m) {
        s = 0, t = FIN;
        init();
        input();
        ll cost;
        MCMF(s, t, cost);
        printf("%lld\n", cost);
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-19 01:07:29

poj 2195 Going Home(最小费最大流)的相关文章

POJ 2195 Going Home (最小费用最大流)

题目链接:http://poj.org/problem?id=2195 题意:n*m的矩阵,地图上有若干个人(m)和房子(H),且人与房子的数量一致.man每移动一格费用为1,一个房子只能住一个人.现在要求所有的人出发,都入住房子,求最少话费. 思路:建立一个超级源点和汇点,源点与人相连费用为0,容量为1,人与房子相连,费用为人与房子的距离,容量为1,房子与汇点相连,费用为0,容量为1 #include <iostream> #include <cstdlib> #include

POJ 2195 Going Home(网络流-费用流)

Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17777   Accepted: 9059 Description On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertical

POJ 2195 Going Home 最小费用最大流 尼玛,心累

D - Going Home Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 2195 Appoint description: Description On a grid map there are n little men and n houses. In each unit time, every little man can mo

POJ 2195 - Going Home - [最小费用最大流][MCMF模板]

题目链接:http://poj.org/problem?id=2195 Time Limit: 1000MS Memory Limit: 65536K Description On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent

POJ 2195 地图的最小费用最大流

思路:这题刚开始看就知道是最小费用最大流了,因为求出最优嘛,而且要m,H要一一对应,所以不是二分图匹配就是最小费用最大流. 不过,刚开始还在想每个m与H之间的最小花费如何求,难道要用dfs搜索吗?这样想之后看了下题目给的时间是1000ms,然后就把dfs搜索m与H之间的最短距离排除了.然后想了想,其实尼玛太简单了,因为题目说了只能垂直与竖直的走,所以最短距离不就是两个横坐标相减与两个纵坐标相减之和嘛! 然后每对m与H之间都连边,流量为1(因为每对匹配不能重复),费用为它们之间的距离即花费:然后建

poj 2135 Farm Tour 最小费最大流

inf开太小错了好久--下次还是要用0x7fffffff #include<stdio.h> #include<string.h> #include<vector> #include<queue> #include<algorithm> using namespace std; const int N=5024; const int inf=0x7fffffff; struct Edge { int from,to,cap,flow,cost;

poj 3422 Kaka&#39;s Matrix Travels 最小费最大流

输入的时候没有取反,一直ole. 这里也是用到拆点,将一个点拆成p和q,这两个之间连接两条路,一条cap=1和cost=矩阵上的值,另一条为cap=k和cost=0.在将0和2*n *n+1看成源点和汇点. #include<stdio.h> #include<string.h> #include<vector> #include<queue> #include<algorithm> using namespace std; const int

POJ 2195 Going Home / HDU 1533(最小费用最大流模板)

题目大意: 有一个最大是100 * 100 的网格图,上面有 s 个 房子和人,人每移动一个格子花费1的代价,求最小代价让所有的人都进入一个房子.每个房子只能进入一个人. 算法讨论: 注意是KM 和 MCMF算法,我写的是MCMF算法,一开始想的是连10000个点,但是不会连那些大众点之间的边,只会连超级点和普通点之间的边.后来觉得只要连房子点和 人点就可以了.连从人到房子的边,容量是1,花费是他们之间的曼哈顿距离,然后超级源点和超级汇点像上面那样连接,注意连点的时候把他们每个点都具体化一下,就

【POJ 2195】 Going Home(KM算法求最小权匹配)

[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20303   Accepted: 10297 Description On a grid map there are n little men and n houses. In each unit time, every little man can move one unit ste