NET设计模式 第二部分 结构性模式(11):外观模式(Façade Pattern)

外观模式(Façade Pattern)

——.NET设计模式系列之十二

Terrylee,2006年3月

概述

在软件开发系统中,客户程序经常会与复杂系统的内部子系统之间产生耦合,而导致客户程序随着子系统的变化而变化。那么如何简化客户程序与子系统之间的交互接口?如何将复杂系统的内部子系统与客户程序之间的依赖解耦?这就是要说的Façade 模式。

意图

为子系统中的一组接口提供一个一致的界面,Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。[GOF 《设计模式》]

示意图

门面模式没有一个一般化的类图描述,下面是一个示意性的对象图:

图1 Façade模式示意性对象图

生活中的例子

外观模式为子系统中的接口定义了一个统一的更高层次的界面,以便于使用。当消费者按照目录采购时,则体现了一个外观模式。消费者拨打一个号码与客服代表联系,客服代表则扮演了这个"外观",他包含了与订货部、收银部和送货部的接口。

图2使用电话订货例子的外观模式对象图

Facade模式解说

我们平时的开发中其实已经不知不觉的在用Façade模式,现在来考虑这样一个抵押系统,当有一个客户来时,有如下几件事情需要确认:到银行子系统查询他是否有足够多的存款,到信用子系统查询他是否有良好的信用,到贷款子系统查询他有无贷款劣迹。只有这三个子系统都通过时才可进行抵押。我们先不考虑Façade模式,那么客户程序就要直接访问这些子系统,分别进行判断。类结构图下:

图3

在这个程序中,我们首先要有一个顾客类,它是一个纯数据类,并无任何操作,示意代码:

//顾客类
public class Customer
{
    private string _name;

    public Customer(string name)
    {
        this._name = name;
    }

    public string Name
    {
        get { return _name; }
    }
}

下面这三个类均是子系统类,示意代码:

//银行子系统
public class Bank
{
    public bool HasSufficientSavings(Customer c, int amount)
    {
        Console.WriteLine("Check bank for " + c.Name);
        return true;
    }
}

//信用子系统
public class Credit
{
    public bool HasGoodCredit(Customer c)
    {
        Console.WriteLine("Check credit for " + c.Name);
        return true;
    }
}

//贷款子系统
public class Loan
{
    public bool HasNoBadLoans(Customer c)
    {
        Console.WriteLine("Check loans for " + c.Name);
        return true;
    }
}

来看客户程序的调用:

//客户程序
public class MainApp
{
    private const int _amount = 12000;

    public static void Main()
    {
        Bank bank = new Bank();
        Loan loan = new Loan();
        Credit credit = new Credit();

        Customer customer = new Customer("Ann McKinsey");

        bool eligible = true;

        if (!bank.HasSufficientSavings(customer, _amount))
        {
            eligible = false;
        }
        else if (!loan.HasNoBadLoans(customer))
        {
            eligible = false;
        }
        else if (!credit.HasGoodCredit(customer))
        {
            eligible = false;
        }

        Console.WriteLine("\n" + customer.Name + " has been " + (eligible ? "Approved" : "Rejected"));
        Console.ReadLine();
    }
}

可以看到,在不用Façade模式的情况下,客户程序与三个子系统都发生了耦合,这种耦合使得客户程序依赖于子系统,当子系统变化时,客户程序也将面临很多变化的挑战。一个合情合理的设计就是为这些子系统创建一个统一的接口,这个接口简化了客户程序的判断操作。看一下引入Façade模式后的类结构图:

图4

门面类Mortage的实现如下:

//外观类
public class Mortgage
{
    private Bank bank = new Bank();
    private Loan loan = new Loan();
    private Credit credit = new Credit();

    public bool IsEligible(Customer cust, int amount)
    {
        Console.WriteLine("{0} applies for {1:C} loan\n",
          cust.Name, amount);

        bool eligible = true;

        if (!bank.HasSufficientSavings(cust, amount))
        {
            eligible = false;
        }
        else if (!loan.HasNoBadLoans(cust))
        {
            eligible = false;
        }
        else if (!credit.HasGoodCredit(cust))
        {
            eligible = false;
        }

        return eligible;
    }
}

顾客类和子系统类的实现仍然如下:

//银行子系统
public class Bank
{
    public bool HasSufficientSavings(Customer c, int amount)
    {
        Console.WriteLine("Check bank for " + c.Name);
        return true;
    }
}

//信用证子系统
public class Credit
{
    public bool HasGoodCredit(Customer c)
    {
        Console.WriteLine("Check credit for " + c.Name);
        return true;
    }
}

//贷款子系统
public class Loan
{
    public bool HasNoBadLoans(Customer c)
    {
        Console.WriteLine("Check loans for " + c.Name);
        return true;
    }
}

//顾客类
public class Customer
{
    private string name;

    public Customer(string name)
    {
        this.name = name;
    }

    public string Name
    {
        get { return name; }
    }
}

而此时客户程序的实现:

//客户程序类
public class MainApp
{
    public static void Main()
    {
        //外观
        Mortgage mortgage = new Mortgage();

        Customer customer = new Customer("Ann McKinsey");
        bool eligable = mortgage.IsEligible(customer, 125000);

        Console.WriteLine("\n" + customer.Name +
            " has been " + (eligable ? "Approved" : "Rejected"));
        Console.ReadLine();
    }
}

可以看到引入Façade模式后,客户程序只与Mortgage发生依赖,也就是Mortgage屏蔽了子系统之间的复杂的操作,达到了解耦内部子系统与客户程序之间的依赖。

.NET架构中的Façade模式

Façade模式在实际开发中最多的运用当属开发N层架构的应用程序了,一个典型的N层结构如下:

图5

在这个架构中,总共分为四个逻辑层,分别为:用户层UI,业务外观层Business Façade,业务规则层Business Rule,数据访问层Data Access。其中Business Façade层的职责如下:

l         从“用户”层接收用户输入

l         如果请求需要对数据进行只读访问,则可能使用“数据访问”层

l         将请求传递到“业务规则”层

l         将响应从“业务规则”层返回到“用户”层

l         在对“业务规则”层的调用之间维护临时状态

对这一架构最好的体现就是Duwamish示例了。在该应用程序中,有部分操作只是简单的从数据库根据条件提取数据,不需要经过任何处理,而直接将数据显示到网页上,比如查询某类别的图书列表。而另外一些操作,比如计算定单中图书的总价并根据顾客的级别计算回扣等等,这部分往往有许多不同的功能的类,操作起来也比较复杂。如果采用传统的三层结构,这些商业逻辑一般是会放在中间层,那么对内部的这些大量种类繁多,使用方法也各异的不同的类的调用任务,就完全落到了表示层。这样势必会增加表示层的代码量,将表示层的任务复杂化,和表示层只负责接受用户的输入并返回结果的任务不太相称,并增加了层与层之间的耦合程度。于是就引入了一个Façade层,让这个Facade来负责管理系统内部类的调用,并为表示层提供了一个单一而简单的接口。看一下Duwamish结构图:

图6

从图中可以看到,UI层将请求发送给业务外观层,业务外观层对请求进行初步的处理,判断是否需要调用业务规则层,还是直接调用数据访问层获取数据。最后由数据访问层访问数据库并按照来时的步骤返回结果到UI层,来看具体的代码实现。

在获取商品目录的时候,Web UI调用业务外观层:

productSystem = new ProductSystem();
categorySet   = productSystem.GetCategories(categoryID);
业务外观层直接调用了数据访问层:

public CategoryData GetCategories(int categoryId)
{
    //
    // Check preconditions
    //
    ApplicationAssert.CheckCondition(categoryId >= 0,"Invalid Category Id",ApplicationAssert.LineNumber);
    //
    // Retrieve the data
    //
    using (Categories accessCategories = new Categories())
    {
        return accessCategories.GetCategories(categoryId);
    }

}
在添加订单时,UI调用业务外观层:

public void AddOrder()
{
    ApplicationAssert.CheckCondition(cartOrderData != null, "Order requires data", ApplicationAssert.LineNumber);

    //Write trace log.
    ApplicationLog.WriteTrace("Duwamish7.Web.Cart.AddOrder:\r\nCustomerId: " +
                                cartOrderData.Tables[OrderData.CUSTOMER_TABLE].Rows[0][OrderData.PKID_FIELD].ToString());
    cartOrderData = (new OrderSystem()).AddOrder(cartOrderData);
}

业务外观层调用业务规则层:

public OrderData AddOrder(OrderData order)
{
    //
    // Check preconditions
    //
    ApplicationAssert.CheckCondition(order != null, "Order is required", ApplicationAssert.LineNumber);

    (new BusinessRules.Order()).InsertOrder(order);
    return order;
}

业务规则层进行复杂的逻辑处理后,再调用数据访问层:

public bool InsertOrder(OrderData order)
{
    //
    // Assume it‘s good
    //
    bool isValid = true;
    //
    // Validate order summary
    //
    DataRow summaryRow = order.Tables[OrderData.ORDER_SUMMARY_TABLE].Rows[0];

    summaryRow.ClearErrors();

    if (CalculateShipping(order) != (Decimal)(summaryRow[OrderData.SHIPPING_HANDLING_FIELD]))
    {
        summaryRow.SetColumnError(OrderData.SHIPPING_HANDLING_FIELD, OrderData.INVALID_FIELD);
        isValid = false;
    }

    if (CalculateTax(order) != (Decimal)(summaryRow[OrderData.TAX_FIELD]))
    {
        summaryRow.SetColumnError(OrderData.TAX_FIELD, OrderData.INVALID_FIELD);
        isValid = false;
    }
    //
    // Validate shipping info
    //
    isValid &= IsValidField(order, OrderData.SHIPPING_ADDRESS_TABLE, OrderData.SHIP_TO_NAME_FIELD, 40);
    //
    // Validate payment info
    //
    DataRow paymentRow = order.Tables[OrderData.PAYMENT_TABLE].Rows[0];

    paymentRow.ClearErrors();

    isValid &= IsValidField(paymentRow, OrderData.CREDIT_CARD_TYPE_FIELD, 40);
    isValid &= IsValidField(paymentRow, OrderData.CREDIT_CARD_NUMBER_FIELD,  32);
    isValid &= IsValidField(paymentRow, OrderData.EXPIRATION_DATE_FIELD, 30);
    isValid &= IsValidField(paymentRow, OrderData.NAME_ON_CARD_FIELD, 40);
    isValid &= IsValidField(paymentRow, OrderData.BILLING_ADDRESS_FIELD, 255);
    //
    // Validate the order items and recalculate the subtotal
    //
    DataRowCollection itemRows = order.Tables[OrderData.ORDER_ITEMS_TABLE].Rows;

    Decimal subTotal = 0;

    foreach (DataRow itemRow in itemRows)
    {
        itemRow.ClearErrors();

        subTotal += (Decimal)(itemRow[OrderData.EXTENDED_FIELD]);

        if ((Decimal)(itemRow[OrderData.PRICE_FIELD]) <= 0)
        {
            itemRow.SetColumnError(OrderData.PRICE_FIELD, OrderData.INVALID_FIELD);
            isValid = false;
        }

        if ((short)(itemRow[OrderData.QUANTITY_FIELD]) <= 0)
        {
            itemRow.SetColumnError(OrderData.QUANTITY_FIELD, OrderData.INVALID_FIELD);
            isValid = false;
        }
    }
    //
    // Verify the subtotal
    //
    if (subTotal != (Decimal)(summaryRow[OrderData.SUB_TOTAL_FIELD]))
    {
        summaryRow.SetColumnError(OrderData.SUB_TOTAL_FIELD, OrderData.INVALID_FIELD);
        isValid = false;
    }

    if ( isValid )
    {
        using (DataAccess.Orders ordersDataAccess = new DataAccess.Orders())
        {
            return (ordersDataAccess.InsertOrderDetail(order)) > 0;
        }
    }
    else
        return false;
}

效果及实现要点

1.Façade模式对客户屏蔽了子系统组件,因而减少了客户处理的对象的数目并使得子系统使用起来更加方便。

2.Façade模式实现了子系统与客户之间的松耦合关系,而子系统内部的功能组件往往是紧耦合的。松耦合关系使得子系统的组件变化不会影响到它的客户。

3.如果应用需要,它并不限制它们使用子系统类。因此你可以在系统易用性与通用性之间选择。

适用性

1.为一个复杂子系统提供一个简单接口。

2.提高子系统的独立性。

3.在层次化结构中,可以使用Facade模式定义系统中每一层的入口。

总结

Façade模式注重的是简化接口,它更多的时候是从架构的层次去看整个系统,而并非单个类的层次。

参考资料

Erich Gamma等,《设计模式:可复用面向对象软件的基础》,机械工业出版社

Robert C.Martin,《敏捷软件开发:原则、模式与实践》,清华大学出版社

阎宏,《Java与模式》,电子工业出版社

Alan Shalloway James R. Trott,《Design Patterns Explained》,中国电力出版社

MSDN WebCast 《C#面向对象设计模式纵横谈(11):Facade外观模式(结构型模式)》

时间: 2024-09-27 12:26:52

NET设计模式 第二部分 结构性模式(11):外观模式(Façade Pattern)的相关文章

设计模式——11.外观模式

1. 模式动机 2. 模式定义 外观模式(Facade Pattern):外部与一个子系统的通信必须通过一个统一的外观对象进行,为子系统中的一组接口提供一个一致的界面,外观模式定义了一个高层接口,这个接口使得这一子系统更加容易使用.外观模式又称为门面模式,它是一种对象结构型模式. 3. 模式结构 外观模式包含如下角色: Facade: 外观角色 SubSystem:子系统角色 4. 时序图 5. 代码分析 #include <iostream> #include "Facade.h&

设计模式(十一):FACADE外观模式 -- 结构型模式

1. 概述 外观模式,我们通过外观的包装,使应用程序只能看到外观对象,而不会看到具体的细节对象,这样无疑会降低应用程序的复杂度,并且提高了程序的可维护性.例子1:一个电源总开关可以控制四盏灯.一个风扇.一台空调和一台电视机的启动和关闭.该电源总开关可以同时控制上述所有电器设备,电源总开关即为该系统的外观模式设计. 2. 问题 为了降低复杂性,常常将系统划分为若干个子系统.但是如何做到各个系统之间的通信和相互依赖关系达到最小呢? 3. 解决方案 外观模式:为子系统中的一组接口提供一个一致的界面,

设计模式(7)--适配式模式与外观模式

转换接口. 引入新原则: " 最少知识"原则   作用为 外观模式 面向对象的适配器:将一个接口转换成另一个接口,以符合客户的期望. 对象适配器  与  类适配器 OO原则:(1)封装变化 (2)多用组合,少用继承 (3)针对接口编程,不针对实现编程 (4)为交互对象之间的松耦合设计而努力 (5)类应该对扩展开放,对修改关闭.(6) 依赖抽象,不要依赖具体类.(7)只和朋友交流. OO模式: 适配器模式-:将一个类的接口,转换成客户期望的另一个接口.适配器让原本接口不兼容的类可以合作无

面向对象的设计模式(十二),外观模式

?终于考试完了,瞬间感觉轻松了许多,又可以安心地写代码了,下面进入今天的正题–外观模式. ?外观模式,也称门面模式,顾名思义,就是一个对象封装了一系列相关的操作(行为),使得这些操作仅对外提供(暴露)方法(接口),客户端根据这些外观(暴露的接口)就可以简单地完成一系列操作,达到了客户端无需知道内部实现细节,只需知道对象的外观就可以实现一系列行为,简单来说就是面向对象的封装.这一系列行为也就是一个系统的功能. 定义:通过一个统一的对象实现一个系统的外部与内部的通讯,提供了一个高层次的接口,使得系统

14结构型模式之外观模式

概念  Facade模式也叫外观模式,是由GoF提出的23种设计模式中的一种.Facade模式为一组具有类似功能的类群,比如类库,子系统等等,提供一个一致的简单的界面.这个一致的简单的界面被称作facade. 角色和职责 Fa?ade 为调用方, 定义简单的调用接口. Clients 调用者.通过Facade接口调用提供某功能的内部类群. Packages 功能提供者.指提供功能的类群(模块或子系统) 适用于: 为子系统中统一一套接口,让子系统更加容易使用. 案例 //实现多个子系统的封装 #i

NET设计模式 第二部分 结构性模式(14):结构型模式专题总结

——探索设计模式系列之十五 Terrylee,2006年5月 摘要:结构型模式,顾名思义讨论的是类和对象的结构,它采用继承机制来组合接口或实现(类结构型模式),或者通过组合一些对象,从而实现新的功能(对象结构型模式).这些结构型模式,它们在某些方面具有很大的相似性,仔细推敲,侧重点却各有不同.本文试图对这几种结构型模式做一个简单的小结. 主要内容 1.结构型模式概述 2.结构型模式区别与比较 3.对变化的封装 结构型模式概述 结构型模式,顾名思义讨论的是类和对象的结构,它采用继承机制来组合接口或

NET设计模式 第二部分 结构性模式(9):装饰模式(Decorator Pattern)

装饰模式(Decorator Pattern) ——.NET设计模式系列之十 Terrylee,2006年3月 概述 在软件系统中,有时候我们会使用继承来扩展对象的功能,但是由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性:并且随着子类的增多(扩展功能的增多),各种子类的组合(扩展功能的组合)会导致更多子类的膨胀.如何使“对象功能的扩展”能够根据需要来动态地实现?同时避免“扩展功能的增多”带来的子类膨胀问题?从而使得任何“功能扩展变化”所导致的影响将为最低?这就是本文要讲的Decorat

设计模式-11 外观模式(结构型模式)

一  外观模式 外观模式(Facade Pattern)隐藏系统的复杂性,并向客户端提供了一个客户端可以访问系统的接口.这种类型的设计模式属于结构型模式,它向现有的系统添加一个接口,来隐藏系统的复杂性. 主要解决:降低访问复杂系统的内部子系统时的复杂度,简化客户端与之的接口. 关键代码:在客户端和复杂系统之间再加一层,这一次将调用顺序.依赖关系等处理好. 使用场景: JAVA 的三层开发模式 1.为复杂的模块或子系统提供外界访问的模块. 2.子系统相对独立. 3.预防低水平人员带来的风险. 类图

NET设计模式 第二部分 结构性模式(8):桥接模式(Bridge Pattern)

桥接模式(Bridge Pattern) ——.NET设计模式系列之九 Terrylee,2006年2月 概述 在软件系统中,某些类型由于自身的逻辑,它具有两个或多个维度的变化,那么如何应对这种“多维度的变化”?如何利用面向对象的技术来使得该类型能够轻松的沿着多个方向进行变化,而又不引入额外的复杂度?这就要使用Bridge模式. 意图 将抽象部分与实现部分分离,使它们都可以独立的变化.[GOF <设计模式>] 结构图 图1 Bridge模式结构图 生活中的例子 桥接模式将抽象部分与它的实现分离