复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第七大题解答

七、(本题10分) 设 $A,B,C$ 分别为 $m\times m$, $n\times n$, $m\times n$ 阶复矩阵, $M=\begin{pmatrix} A & C\\ 0 & B\\ \end{pmatrix}$ 可对角化, 求证: 矩阵方程 $AX-XB=C$ 必有解.

证明  任取 $M$ 的特征值 $\lambda_0$, $M-\lambda_0I=\begin{pmatrix} A-\lambda_0I & C \\ 0 & B-\lambda_0I \end{pmatrix}$, 由矩阵秩的不等式可得 $$r(M-\lambda_0I)\geq r(A-\lambda_0I)+r(B-\lambda_0I).$$ 记 $m_M(\lambda_0),t_M(\lambda_0)$ 为 $M$ 的代数重数和几何重数, 则由上式及 $M$ 可对角化可得: $$m_M(\lambda_0)=t_M(\lambda_0)=m+n-r(M-\lambda_0I)\leq m-r(A-\lambda_0I)+n-r(B-\lambda_0I)=t_A(\lambda_0)+t_B(\lambda_0)\leq m_A(\lambda_0)+m_B(\lambda_0).$$ 因为上式左右两端相等, 故可得 $$t_A(\lambda_0)=m_A(\lambda_0),\,\,\,\,t_B(\lambda_0)=m_B(\lambda_0),\,\,\,\,r(M-\lambda_0I)=r(A-\lambda_0I)+r(B-\lambda_0I).\cdots(*)$$ 由 $\lambda_0$ 的任意性可知 $A,B$ 可对角化. 设 $P,Q$ 为非异阵, 使得 $P^{-1}AP=\mathrm{diag}\{\lambda_1,\cdots,\lambda_m\}$, $Q^{-1}BQ=\mathrm{diag}\{\mu_1,\cdots,\mu_n\}$, 则 $$\begin{pmatrix} P^{-1} & 0 \\ 0 & Q^{-1} \end{pmatrix}\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}\begin{pmatrix} P & 0 \\ 0 & Q \end{pmatrix}=\begin{pmatrix} P^{-1}AP & P^{-1}CQ \\ 0 & Q^{-1}BQ \end{pmatrix},$$ $$(P^{-1}AP)(P^{-1}XQ)-(P^{-1}XQ)(Q^{-1}BQ)=P^{-1}CQ,$$ 故不妨一开始就假设 $A,B$ 均为对角阵. 设 $X=(x_{ij})_{m\times n}$, $C=(c_{ij})_{m\times n}$, 则矩阵方程 $AX-XB=C$ 等价于 $$(\lambda_i-\mu_j)x_{ij}=c_{ij},\,\,\,\,1\leq i\leq m,\,\,1\leq j\leq n.$$ 若 $\lambda_i\neq\mu_j$, 则 $x_{ij}=\dfrac{c_{ij}}{\lambda_i-\mu_j}$ 有唯一解; 若 $\lambda_i=\mu_j$, 则只要证明 $c_{ij}=0$, 这样 $x_{ij}$ 就可任意取值, 从而原方程必有解. 不失一般性, 可设 $$A=\mathrm{diag}\{\lambda_0,\cdots,\lambda_0,\lambda_{r+1},\cdots,\lambda_m\},\,\,\,\,\lambda_j\neq\lambda_0,\,\,\forall\,j\geq r+1,$$ $$B=\mathrm{diag}\{\lambda_0,\cdots,\lambda_0,\mu_{s+1},\cdots,\mu_m\},\,\,\,\,\mu_j\neq\lambda_0,\,\,\forall\,j\geq s+1.$$ 记 $$A_1=\mathrm{diag}\{\lambda_{r+1}-\lambda_0,\cdots,\lambda_m-\lambda_0\},\,\,\,\, B_1=\mathrm{diag}\{\mu_{s+1}-\lambda_0,\cdots,\mu_m-\lambda_0\},$$ 则有如下分块矩阵的初等变换: $$M-\lambda_0I=\begin{pmatrix} 0 & 0 & C_{11} & C_{12} \\ 0 & A_1 & C_{21} & C_{22} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & B_1 \end{pmatrix}\longrightarrow \begin{pmatrix} 0 & 0 & C_{11} & 0 \\ 0 & A_1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & B_1 \end{pmatrix},$$ 由此可得 $$r(M-\lambda_0I)=r(A_1)+r(B_1)+r(C_{11}),\,\,\,\,r(A_1)=r(A-\lambda_0I),\,\,\,\,r(B_1)=r(B-\lambda_0I).$$ 最后由 (*) 式即得 $r(C_{11})=0$, 即 $C_{11}=0$, 从而结论得证.  $\Box$

  本题是白皮书例6.45的自然延伸. 事实上, 本题还可以作如下的推广 (由 Roth 在1952年给出证明), 这一推广还和15级高代I期末考试倒数第二题有着密切的联系. 虽然 Roth 定理的证明并不算难, 但比较长, 有兴趣的同学可以参考其原始的证明 (W. E. Roth, The Equations $AX-YB=C$ and $AX-XB=C$ in Matrices, Proceedings of the American Mathematical Society, Vol. 3, No. 3 (1952), pp. 392-396).

Roth 定理  设 $A,B,C$ 分别为 $m\times m$, $n\times n$, $m\times n$ 阶复矩阵, 则

(1) $\begin{pmatrix} A & C\\ 0 & B\\ \end{pmatrix}$ 相抵于 $\begin{pmatrix} A & 0\\ 0 & B\\ \end{pmatrix}$ 的充分必要条件是矩阵方程 $AX-YB=C$ 有解;

(2) $\begin{pmatrix} A & C\\ 0 & B\\ \end{pmatrix}$ 相似于 $\begin{pmatrix} A & 0\\ 0 & B\\ \end{pmatrix}$ 的充分必要条件是矩阵方程 $AX-XB=C$ 有解.

时间: 2024-10-10 02:05:00

复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第七大题解答的相关文章

复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第七大题解答

七.(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(\lambda),g'(\lambda))=1$. 证明: $A$ 可对角化的充要条件是 $g(A)$ 可对角化. 证明  先证必要性. 设 $A$ 可对角化, 即存在非异阵 $P$, 使得 $P^{-1}AP=\Lambda=\mathrm{diag}\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$ 为对角阵,

复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第七大题解答

七.(本题10分) 设 $A,B$ 为 $n$ 阶方阵, 满足 $AB=BA=0$, $r(A)=r(A^2)$, 求证: $$r(A+B)=r(A)+r(B).$$ 分析  这是一道陈题, 出现在各种高代教材或考研试题中. 这道题目至少有三种证法, 第一种方法利用分块初等变换, 这需要对矩阵秩的证明技巧十分熟悉才能想到; 第二种方法利用线性变换理论, 只要对几何概念和相关技巧掌握熟练, 并不是高不可攀的证明; 第三种证法利用 Jordan 标准形理论, 这是最简单快捷的证法, 也是 Jorda

复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第七大题解答

七.(本题10分)  设 $A_1,A_2,\cdots,A_m$ 为 $n$ 阶实对称阵, 其中 $A_1$ 为正定阵, 并且对任意的 $2\leq i<j\leq m$, $A_iA_1^{-1}A_j$ 都是对称阵. 证明: 存在非异实方阵 $C$, 使得$$C'A_1C=I_n,\,\,\,\,C'A_iC=\mathrm{diag}\{\lambda_{i1},\lambda_{i2},\cdots,\lambda_{in}\},\,\,i=2,\cdots,m,$$ 其中 $\{\l

复旦大学数学学院18级高等代数II期中考试第七大题的三种证法及其推广

七.(10分)  设 $A$ 为 $n$ 阶复方阵, 证明: 存在复数 $c_1,\cdots,c_{n-1}$, 使得 $$A-c_1e^A-c_2e^{2A}-\cdots-c_{n-1}e^{(n-1)A}$$ 是可对角化矩阵. 本题是18级高等代数II期中考试的第七大题, 虽然结论涉及矩阵的多项式表示和可对角化矩阵, 但考察的重点其实是矩阵 Jordan 标准型的应用. 本题有三种证法, 第一种证法就是 Jordan 标准型的应用, 整个证明过程类似于 Jordan-Chevalley

复旦大学2016--2017学年第一学期(16级)高等代数I期末考试第七大题解答

七.(本题10分)  设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充要条件是存在 $m$ 阶方阵 $P$, 使得 $B=PA$ 或 $A=PB$. 证法一  由 $A'B+B'A=0$ 可得 $$(A+B)'(A+B)=A'A+B'B.$$ 设 $V_A\subseteq\mathbb{R}^n$ 为线性方程组 $Ax=0$ 的解空间, $V_B$ 和 $V_{A+

复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第七大题解答

七.(本题10分)  设 $U,V,W$ 均为数域 $K$ 上的非零线性空间, $\varphi:V\to U$ 和 $\psi:U\to W$ 是线性映射, 满足 $r(\psi\varphi)=r(\varphi)$. 证明: 存在线性映射 $\xi:W\to U$, 使得 $\xi\psi\varphi=\varphi$. 证法一 (几何方法1)  设 $r(\psi\varphi)=r(\varphi)=r$, 先取 $\mathrm{Ker}\varphi$ 的一组基 $\{e_{r+

复旦大学2019--2020学年第一学期(19级)高等代数I期末考试第八大题解答

八.(本题10分)  设 $A=(a_{ij})$ 为 $n\,(n>1)$ 阶实对称阵, 满足: 每行元素之和都等于零, 并且非主对角元素都小于等于零. 设指标集 $\Gamma=\{1,2,\cdots,n\}$, 两个指标 $i\neq j$ 称为连通的, 如果存在一列指标 $i=i_1,i_2,\cdots,i_k=j$, 使得 $a_{i_1i_2}<0$, $a_{i_2i_3}<0$, $\cdots$, $a_{i_{k-1}i_k}<0$. 设指标集 $\Gamm

复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第八大题解答

八.(本题10分)  设 \(A,B\) 均为 \(m\times n\) 矩阵, 满足 \(r(A+B)=r(A)+r(B)\), 证明: 存在 \(m\) 阶非异阵 \(P\), \(n\) 阶非异阵 \(Q\), 使得 \[PAQ=\begin{pmatrix} I_r & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},\,\,\,\,PBQ=\begin{pmatrix} 0 & 0 &

复旦大学2016--2017学年第二学期高等代数II期末考试情况分析

一.期末考试成绩班级前十五名 林晨(93).朱民哲(92).何陶然(91).徐钰伦(91).吴嘉诚(91).于鸿宝(91).宁盛臻(90).杨锦文(89).占文韬(88).章俊鑫(87).颜匡萱(87).王旭磊(87).王泽斌(87).沈伊南(86).李飞虎(86) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*15%+期中考试成绩*15%+期末考试成绩*70% 三.最终成绩及人数 最终成绩 人数 A