解释器模式-类行为型

原理

给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器。客户端可以使用这个解释器来解释这个语言中的句子。

组成

  模式所涉及的角色如下所示:

  (1)抽象表达式(Expression)角色:声明一个所有的具体表达式角色都需要实现的抽象接口。这个接口主要是一个interpret()方法,称做解释操作。

  (2)终结符表达式(Terminal Expression)角色:实现了抽象表达式角色所要求的接口,主要是一个interpret()方法;文法中的每一个终结符都有一个具体终结表达式与之相对应。比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。

  (3)非终结符表达式(Nonterminal Expression)角色:文法中的每一条规则都需要一个具体的非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,“+"就是非终结符,解析“+”的解释器就是一个非终结符表达式。

  (4)环境(Context)角色:这个角色的任务一般是用来存放文法中各个终结符所对应的具体值,比如R=R1+R2,我们给R1赋值100,给R2赋值200。这些信息需要存放到环境角色中,很多情况下我们使用Map来充当环境角色就足够了。

 为了说明解释器模式的实现办法,这里给出一个最简单的文法和对应的解释器模式的实现,这就是模拟Java语言中对布尔表达式进行操作和求值。

  在这个语言中终结符是布尔变量,也就是常量true和false。非终结符表达式包含运算符and,or和not等布尔表达式。这个简单的文法如下:

    Expression  ::= Constant | Variable | Or | And | Not

    And     ::= Expression ‘AND‘ Expression

    Or     ::= Expression ‘OR‘ Expression

    Not     ::= ‘NOT‘ Expression

    Variable  ::= 任何标识符

    Constant    ::= ‘true‘ | ‘false‘

  解释器模式的结构图如下所示:

  

抽象表达式角色

public abstract class Expression {
    /**
     * 以环境为准,本方法解释给定的任何一个表达式
     */
    public abstract boolean interpret(Context ctx);
    /**
     * 检验两个表达式在结构上是否相同
     */
    public abstract boolean equals(Object obj);
    /**
     * 返回表达式的hash code
     */
    public abstract int hashCode();
    /**
     * 将表达式转换成字符串
     */
    public abstract String toString();
}

  一个Constant对象代表一个布尔常量

public class Constant extends Expression{

    private boolean value;

    public Constant(boolean value){
        this.value = value;
    }

    @Override
    public boolean equals(Object obj) {

        if(obj != null && obj instanceof Constant){
            return this.value == ((Constant)obj).value;
        }
        return false;
    }

    @Override
    public int hashCode() {
        return this.toString().hashCode();
    }

    @Override
    public boolean interpret(Context ctx) {

        return value;
    }

    @Override
    public String toString() {
        return new Boolean(value).toString();
    }

}

  一个Variable对象代表一个有名变量

public class Variable extends Expression {

    private String name;

    public Variable(String name){
        this.name = name;
    }
    @Override
    public boolean equals(Object obj) {

        if(obj != null && obj instanceof Variable)
        {
            return this.name.equals(
                    ((Variable)obj).name);
        }
        return false;
    }

    @Override
    public int hashCode() {
        return this.toString().hashCode();
    }

    @Override
    public String toString() {
        return name;
    }

    @Override
    public boolean interpret(Context ctx) {
        return ctx.lookup(this);
    }

}

  代表逻辑“与”操作的And类,表示由两个布尔表达式通过逻辑“与”操作给出一个新的布尔表达式的操作

public class And extends Expression {

    private Expression left,right;

    public And(Expression left , Expression right){
        this.left = left;
        this.right = right;
    }
    @Override
    public boolean equals(Object obj) {
        if(obj != null && obj instanceof And)
        {
            return left.equals(((And)obj).left) &&
                right.equals(((And)obj).right);
        }
        return false;
    }

    @Override
    public int hashCode() {
        return this.toString().hashCode();
    }

    @Override
    public boolean interpret(Context ctx) {

        return left.interpret(ctx) && right.interpret(ctx);
    }

    @Override
    public String toString() {
        return "(" + left.toString() + " AND " + right.toString() + ")";
    }

}

  代表逻辑“或”操作的Or类,代表由两个布尔表达式通过逻辑“或”操作给出一个新的布尔表达式的操作

public class Or extends Expression {
    private Expression left,right;

    public Or(Expression left , Expression right){
        this.left = left;
        this.right = right;
    }
    @Override
    public boolean equals(Object obj) {
        if(obj != null && obj instanceof Or)
        {
            return this.left.equals(((Or)obj).left) && this.right.equals(((Or)obj).right);
        }
        return false;
    }

    @Override
    public int hashCode() {
        return this.toString().hashCode();
    }

    @Override
    public boolean interpret(Context ctx) {
        return left.interpret(ctx) || right.interpret(ctx);
    }

    @Override
    public String toString() {
        return "(" + left.toString() + " OR " + right.toString() + ")";
    }

}

  代表逻辑“非”操作的Not类,代表由一个布尔表达式通过逻辑“非”操作给出一个新的布尔表达式的操作

public class Not extends Expression {

    private Expression exp;

    public Not(Expression exp){
        this.exp = exp;
    }
    @Override
    public boolean equals(Object obj) {
        if(obj != null && obj instanceof Not)
        {
            return exp.equals(
                    ((Not)obj).exp);
        }
        return false;
    }

    @Override
    public int hashCode() {
        return this.toString().hashCode();
    }

    @Override
    public boolean interpret(Context ctx) {
        return !exp.interpret(ctx);
    }

    @Override
    public String toString() {
        return "(Not " + exp.toString() + ")";
    }

}

  环境(Context)类定义出从变量到布尔值的一个映射

public class Context {

    private Map<Variable,Boolean> map = new HashMap<Variable,Boolean>();

    public void assign(Variable var , boolean value){
        map.put(var, new Boolean(value));
    }

    public boolean lookup(Variable var) throws IllegalArgumentException{
        Boolean value = map.get(var);
        if(value == null){
            throw new IllegalArgumentException();
        }
        return value.booleanValue();
    }
}

  客户端类

public class Client {

    public static void main(String[] args) {
        Context ctx = new Context();
        Variable x = new Variable("x");
        Variable y = new Variable("y");
        Constant c = new Constant(true);
        ctx.assign(x, false);
        ctx.assign(y, true);

        Expression exp = new Or(new And(c,x) , new And(y,new Not(x)));
        System.out.println("x=" + x.interpret(ctx));
        System.out.println("y=" + y.interpret(ctx));
        System.out.println(exp.toString() + "=" + exp.interpret(ctx));
    }

}
时间: 2024-10-10 09:46:58

解释器模式-类行为型的相关文章

设计模式15:Interpreter 解释器模式(行为型模式)

Interpreter 解释器模式(行为型模式) 动机(Motivation) 在软件构建过程中,如果某一特定领域的问题比较复杂,类似的模式不断重复出现,如果使用普通的编程方式来实现将面临非常频繁的变化. 在这种情况下,将特定领域的问题表达为某种语法规则下的句子,然后构建一个解释器来解释这样的句子,从而达到解决问题的目的. 意图(Intent) 给定一个语言,定义它的文法的一种表示,并定义一种解释器,这个解释器用来解释语言中的句子.——<设计模式>GoF 中文数字转换为阿拉伯数字 public

解释器模式 Interpreter 行为型 设计模式(十九)

解释器模式(Interpreter) 考虑上图中计算器的例子 设计可以用于计算加减运算(简单起见,省略乘除),你会怎么做? 你可能会定义一个工具类,工具类中有N多静态方法 比如定义了两个方法用于计算a+b 和 a+b-c public static int add(int a,int b){ return a+b; } public static int add(int a,int b,int c){ return a+b-c; } 但是很明显,如果形式有限,那么可以针对对应的形式进行编程 如果

模板模式-类行为型

原理 模板方法模式是类的行为模式.准备一个抽象类,将部分逻辑以具体方法以及具体构造函数的形式实现,然后声明一些抽象方法来迫使子类实现剩余的逻辑.不同的子类可以以不同的方式实现这些抽象方法,从而对剩余的逻辑有不同的实现.这就是模板方法模式的用意. 在面向对象开发过程中,通常我们会遇到这样的一个问题:我们知道一个算法所需的关键步骤,并确定了这些步骤的执行顺序.但是某些步骤的具体实现是未知的,或者说某些步骤的实现与具体的环境相关. 1)模板方法模式是基于继承的代码复用基本技术,模板方法模式的结构和用法

设计模式 笔记 解释器模式 Interpreter

//---------------------------15/04/26---------------------------- //Interpreter 解释器模式----类行为型模式 /* 1:意图: 给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. 2:动机: 3:适用性: 当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法书时,可使用解释器模式.当 存在以下情况时该模式效果最好: 1>该文法简单对于复杂的文法,文法的类

行为型模式之解释器模式

概述 解释器模式是一种使用频率相对较低但学习难度较大的设计模式,它用于描述如何使用面向对象语言构成一个简单的语言解释器.在某些情况下,为了更好地描述某一些特定类型的问题,我们可以创建一种新的语言,这种语言拥有自己的表达式和结构,即文法规则,这些问题的实例将对应为该语言中的句子.此时,可以使用解释器模式来设计这种新的语言.对解释器模式的学习能够加深我们对面向对象思想的理解,并且掌握编程语言中文法规则的解释过程 定义 解释器模式(Interpreter Pattern):定义一个语言的文法,并且建立

第17章 行为型模式—解释器模式

1. 解释器模式(Interpreter Pattern)的定义 (1)定义 给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子. ①文法:即语法规则.在解释器模式中每一个语法都将对应一个解释器对象,用来处理相应的语法规则.它对于扩展.改变文法以及增加新的文法规则都很方便. ②解释器模式描述了如何为简单的语言定义一个文法,如何在该语言中表示一个句子,以及如何解释这些句子. ③在解释器模式中可以通过一种称之为抽象语法树(Abstract Syntax T

设计模式(行为型)之解释器模式(Interpreter Pattern)

PS一句:最终还是选择CSDN来整理发表这几年的知识点,该文章平行迁移到CSDN.因为CSDN也支持MarkDown语法了,牛逼啊! [工匠若水 http://blog.csdn.net/yanbober] 阅读前一篇<设计模式(行为型)之访问者模式(Visitor Pattern)>http://blog.csdn.net/yanbober/article/details/45536787 概述 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个

设计模式(15)--Interpreter(解释器模式)--行为型

1.模式定义: 解释器模式是类的行为模式.给定一个语言之后,解释器模式可以定义出其文法的一种表示,并同时提供一个解释器.客户端可以使用这个解释器来解释这个语言中的句子. 2.模式特点: 解释器模式在实际的系统开发中使用的非常少,因为它会引起效率.性能以及维护等问题,一般在大中型的框架型项目能够找到它的身影,比如一些数据分析工具.报表设计工具.科学计算工具等等,若你确实遇到“一种特定类型的问题发生的频率足够高”的情况,准备使用解释器模式时,可以考虑一下Expression4J.MESP(Math

设计模式-行为型模式,解释器模式(12)

解释器模式(Interpreter Pattern)提供了评估语言的语法或表达式的方式,它属于行为型模式.这种模式实现了一个表达式接口,该接口解释一个特定的上下文.这种模式被用在 SQL 解析.符号处理引擎等. 对每个应用来说,至少有以下两种不同的用户分类.? 基本用户:这类用户只希望能够凭直觉使用应用.他们不喜欢花太多时间配置或学习应用的内部.对他们来说,基本的用法就足够了.? 高级用户:这些用户,实际上通常是少数,不介意花费额外的时间学习如何使用应用的高级特性.如果知道学会之后能得到以下好处