P4721 【模板】分治 FFT

\(\color{#0066ff}{ 题目描述 }\)

给定长度为 \(n-1\) 的数组 \(g[1],g[2],..,g[n-1]\),求 \(f[0],f[1],..,f[n-1]\),其中

\(f[i]=\sum_{j=1}^if[i-j]g[j]\)

边界为 \(f[0]=1\) 。答案模 \(998244353\) 。

\(\color{#0066ff}{输入格式}\)

第一行一个正整数 \(n\) 。

第二行共 \(n-1\) 个非负整数 \(g[1],g[2],..,g[n-1]\),用空格隔开。

\(\color{#0066ff}{输出格式}\)

一行共 \(n\) 个非负整数,表示 \(f[0],f[1],..,f[n-1]\) 模 \(998244353\) 的值。

\(\color{#0066ff}{输入样例}\)

4
3 1 2

10
2 456 32 13524543 998244352 0 1231 634544 51

\(\color{#0066ff}{输出样例}\)

1 3 10 35

1 2 460 1864 13738095 55389979 617768468 234028967 673827961 708520894

\(\color{#0066ff}{数据范围与提示}\)

\(2≤n≤10^5\)

\(0\leq g[i]<998244353\)

\(\color{#0066ff}{题解}\)

然而这题可以用多项式求逆过(雾

显然可以看出\(f*g=f-f_0\)

然后。。。\(f=\frac{1}{1-g}\)

求个逆就没了。。

#include<bits/stdc++.h>
#define LL long long
LL in() {
    char ch; LL x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
const int maxn = 4e5 + 10;
const int mod = 998244353;
using std::vector;
int n, len, r[maxn];
LL ksm(LL x, LL y) {
    LL re = 1LL;
    while(y) {
        if(y & 1) re = re * x % mod;
        x = x * x % mod;
        y >>= 1;
    }
    return re;
}
void FFT(vector<int> &A, int flag) {
    A.resize(len);
    for(int i = 0; i < len; i++) if(i < r[i]) std::swap(A[i], A[r[i]]);
    for(int l = 1; l < len; l <<= 1) {
        int w0 = ksm(3, (mod - 1) / (l << 1));
        for(int i = 0; i < len; i += (l << 1)) {
            int w = 1, a0 = i, a1 = i + l;
            for(int k = 0; k < l; k++, a0++, a1++, w = 1LL * w0 * w % mod) {
                int tmp = 1LL * w * A[a1] % mod;
                A[a1] = ((A[a0] - tmp) % mod + mod) % mod;
                A[a0] = (A[a0] + tmp) % mod;
            }
        }
    }
    if(!(~flag)) {
        std::reverse(A.begin() + 1, A.end());
        int inv = ksm(len, mod - 2);
        for(int i = 0; i < len; i++) A[i] = 1LL * A[i] * inv % mod;
    }
}
vector<int> operator * (vector<int> A, vector<int> B) {
    int tot = A.size() + B.size() - 1;
    for(len = 1; len <= tot; len <<= 1);
    for(int i = 0; i < len; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
    FFT(A, 1), FFT(B, 1);
    vector<int> ans;
    for(int i = 0; i < len; i++) ans.push_back(1LL * A[i] * B[i] % mod);
    FFT(ans, -1);
    ans.resize(tot);
    return ans;
}
vector<int> operator - (const vector<int> &A, const vector<int> &B) {
    vector<int> ans;
    for(int i = 0; i < (int)std::min(A.size(), B.size()); i++) ans.push_back(A[i] - B[i]);
    for(int i = A.size(); i < (int)B.size(); i++) ans.push_back(-B[i]);
    for(int i = B.size(); i < (int)A.size(); i++) ans.push_back(A[i]);
    return ans;
}
vector<int> inv(const vector<int> &A) {
    if(A.size() == 1) {
        vector<int> ans;
        ans.push_back(ksm(A[0], mod - 2));
        return ans;
    }
    vector<int> ans, B = A;
    int n = A.size(), _ = (n + 1) >> 1;
    B.resize(_);
    ans.push_back(2);
    B = inv(B);
    ans = B * (ans - A * B);
    ans.resize(n);
    return ans;
}
int main() {
    int n = in();
    vector<int> a;
    a.push_back(1);
    for(int i = 1; i < n; i++) a.push_back(mod - in());
    a = inv(a);
    for(int i = 0; i < n; i++) printf("%d%c", a[i], i == n - 1? '\n' : ' ');
    return 0;
}

原文地址:https://www.cnblogs.com/olinr/p/10423604.html

时间: 2024-10-08 18:37:36

P4721 【模板】分治 FFT的相关文章

[题解] Luogu P4721 【模板】分治 FFT

分治FFT的板子为什么要求逆呢 传送门 这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算出左区间里的\(f\)对右边的贡献,然后再算右边的就好了. 手玩一组样例吧:g=[0,3,1,2](默认\(g[0] = 0\)) 一开始,只有f[0]=1 f: [1 0|0 0] 然后我们从中间分开来,先算左边的 f: [1|0|0 0] 然后在分下去我们会找到\(f[0]\),就拿这一段和\(

分治FFT模板

题目链接:https://www.luogu.org/problemnew/show/P4721 总结了一下蒟蒻FFT/NTT容易写错的地方: ? 1.rev数组求错. ? 2.cdq注意顺序:先递归左, 处理左对右的影响,再递归右.(注意!这需要考虑到分治fft的原理!) ? 3.初始a数组忘了取模等各种忘取模. ? 4.NTT第二层循环i+=(1<<j)而不是i+=j ? 5.y=gnk*a[k+j]而不是a[k+j]. 接下来是AC代码 (打//标志的是曾经与现在本蒟蒻FFT写错的地方)

【模板】分治 FFT

题目大意:给定长度为 \(n - 1\) 的序列 \(g\),求 \(f\) 序列,其中 \(f\) 为 \[ f[i]=\sum_{j=1}^{i} f[i-j] g[j] \] 学会了分治 \(fft\). 发现这个式子中也含有卷积,但是这是一个递推式,即:\(f\) 数组是未知的. 考虑分治策略,即:假设已经算出区间 \([l, mid]\) 的 \(f\) 值,现在要计算区间 \([mid + 1, r]\) 的 \(f\). 考虑左半部分对右半部分的贡献,对于 \[x \in [mid

分治FFT

分治FFT 目的 解决这样一类式子: \[f[n] = \sum_{i = 0}^{n - 1}f[i]g[n - i]\] 算法 看上去跟普通卷积式子挺像的,但是由于计算\(f\)的每一项时都在利用它前面的项来产生贡献,所以不能一次FFT搞完.用FFT爆算复杂度\(O(n^2logn)\),比直接枚举复杂度还高-- 考虑优化这个算法,如果我们要计算区间\([l, r]\)内的\(f\)值,如果可以快速算出区间\([l, mid]\)内的\(f\)值对区间\([mid + 1, r]\)内的\(

2017 3 11 分治FFT

考试一道题的递推式为$$f[i]=\sum_{j=1}^{i} j^k \times (i-1)! \times \frac{f[i-j]}{(i-j)!}$$这显然是一个卷积的形式,但$f$需要由自己卷过来(我也不知到怎么说),以前只会生成函数的做法,但这题好像做不了(谁教教我怎么做),于是无奈的写了一发暴力,看题解发现是分治FFT.分治每层用$f[l]-f[mid]$与$a[1]-a[r-l]$做NTT.这样显然每个$f[l]-f[mid]$对$f[mid+1]-f[r]$的贡献都考虑到了.

【bzoj4836】[Lydsy2017年4月月赛]二元运算 分治+FFT

题目描述 定义二元运算 opt 满足 现在给定一个长为 n 的数列 a 和一个长为 m 的数列 b ,接下来有 q 次询问.每次询问给定一个数字 c 你需要求出有多少对 (i, j) 使得 a_i  opt b_j=c . 输入 第一行是一个整数 T (1≤T≤10) ,表示测试数据的组数. 对于每组测试数据: 第一行是三个整数 n,m,q (1≤n,m,q≤50000) . 第二行是 n 个整数,表示 a_1,a_2,?,a_n (0≤a_1,a_2,?,a_n≤50000) . 第三行是 m

HDU Shell Necklace CDQ分治+FFT

Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose

看无可看 分治FFT+特征值方程

题面: 看无可看(see.pas/cpp/c) 题目描述 “What’s left to see when our eyes won’t open?” “若彼此瞑目在即,是否终亦看无可看?” ------来自网易云音乐<Golden Leaves-Passenger> 最后的一刻我看到了...... 一片昏暗? 我记起来了, 我看到,那里有一个集合S,集合S中有n个正整数a[i](1<=i<=n) 我看到,打破昏暗的密码: 记忆中的f是一个数列,对于i>1它满足f(i)=2*

【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

[BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += a 的 大小 如果 a 中 只有 1 个点  退出 否则在a中选一个点x,在a中删除点x 那么a变成了几个小一点的树,对每个小树递归调用Solve我们注意到的这个算法的时间复杂度跟选择的点x是密切相关的.如果x是树的重心,那么时间复杂度就是O(nlogn)但是由于WJMZBMR比较傻逼,他决定随机

[BZOJ4555][TJOI2016&amp;HEOI2016]求和(分治FFT)

解法一:容易得到递推式,可以用CDQ分治+FFT 代码用时:1h 比较顺利,没有低级错误. 实现比较简单,11348ms #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) typedef long long ll; using namespace std; const int N=(1<<18)+100,P=998244353,g=3; int n,re