Binary Search 时间复杂度 O(logN ), 因为每次减少一半 相当于取log
Q: 什么时候可以用Binary Seach?
A: 当数据是Sorted 并且支持Random Access的时候
Binary Search 的基本规则
1. 搜索空间在循环中不断减小
The Searching Area decrease during the process
2. 目标元素(如果存在)不可以被排除到搜索空间之外
Basic Binary Search
public int binarySearch(int[] array, int target) { //Corner case if(array==null || array.length==0){ return -1; } int left=0; int right=array.length-1; while(left<=right){ int mid=left+(right-left)/2; if(array[mid]==target){ return mid; }else if(array[mid]>target){ right=mid-1; }else{ left=mid+1; } } return -1; }
注意几点常见错误
1. int mid=left+(right-left)/2;
目的是防止Overflow
2. 注意while 条件的判断 , 以下循环条件排列从苛刻到宽松
(1).while(left<=right)
留下0个元素
(2).while(left<right)
留下1个元素
(3).while(left<right-1)
留下两个元素
寻找最接近的元素index
public int closest(int[] array, int target) { //Corner case if(array==null || array.length==0){ return -1; } int left=0; int right=array.length-1; while(left<right-1){ int mid=left+(right-left)/2; if(array[mid]==target){ return mid; }else if(array[mid]>target){ //the right element may be the result //cannot be ruled out right=mid; }else{ //the left element may be the result //cannot be ruled out left=mid; } } //Post processing if(target-array[left]<array[right]-target){ return left; }else{ return right; } }
原文地址:https://www.cnblogs.com/brooksli/p/10850744.html
时间: 2024-11-09 15:13:55