基于分类问题的逻辑回归模型

由于分类问题的输出是0、1这样的离散值,因而回归问题中用到的线性回归模型就不再适用了。对于分类问题,我们建立逻辑回归模型。

针对逻辑回归模型,主要围绕以下几点来讨论。

  • Logistic Regression (逻辑回归)

  • Sigmoid Function (逻辑函数)

  • Decision Boundaries (决策边界)

  • Cost Function (代价函数)

决策边界不是数据集的属性,而是假设本身及其参数的属性。我们不是用训练集来定义的决策边界,我们用训练集来拟合参数θ,一旦有了参数θ就可以确定决策边界。

原文地址:https://www.cnblogs.com/CuteyThyme/p/10575657.html

时间: 2024-10-03 14:08:26

基于分类问题的逻辑回归模型的相关文章

「数据挖掘入门系列」挖掘建模之分类与预测–逻辑回归

拿电商行业举例,经常会遇到以下问题: 如果基于商品的历史销售情况,以及节假日.气候.竞争对手等影响因素,对商品的销量进行趋势预测? 如何预测未来一段时间哪些客户会流失,哪些客户可能会成为VIP用户? 如果预测一种新商品的销售量,以及哪种类型的客户会比较喜欢? 除此之外,运营部门需要通过数据分析来了解具有某些特征的客户的消费习惯,管理人员希望了解下一个月的销售收入等,这些都是分类与预测的日志. 分类和预测是预测问题的两种主要类型. 分类主要是预测分类标号(离散值) 预测主要是建立连续值函数模型 挖

逻辑回归模型预测股票涨跌

http://www.cnblogs.com/lafengdatascientist/p/5567038.html 逻辑回归模型预测股票涨跌 逻辑回归是一个分类器,其基本思想可以概括为:对于一个二分类(0~1)问题,若P(Y=1/X)>0.5则归为1类,若P(Y=1/X)<0.5,则归为0类. 一.模型概述 1.Sigmoid函数 为了具象化前文的基本思想,这里介绍Sigmoid函数: 函数图像如下: 红色的线条,即x=0处将Sigmoid曲线分成了两部分:当 x < 0,y <

逻辑回归模型(Logistic Regression)及Python实现

逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑

SparkMLlib学习分类算法之逻辑回归算法

SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693836) 逻辑回归与线性回归类似,但它不属于回归分析家族(主要为二分类),而属于分类家族,差异主要在于变量不同,因此其解法与生成曲线也不尽相同.逻辑回归是无监督学习的一个重要算法,对某些数据与事物的归属(分到哪个类别)及可能性(分到某一类别的概率)进行评估. (二),SparkMLlib逻辑回归应用

机器学习之——判定边界和逻辑回归模型的代价函数

判定边界(Decision Boundary) 上一次我们讨论了一个新的模型--逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测: 当h?大于等于0.5时,预测y=1 当h?小于0.5时,预测y=0 根据上面的预测,我们绘制出一条S形函数,如下: 根据函数图像,我们知道,当 z=0时,g(z)=0.5 z>0时,g(z)>0.5 z<0时,g(z)<0.5 又有: 所以 以上,为我们预知的逻辑回归的部分内容.好,现在假设我们有一个模型: 并且参数?是向

逻辑回归模型梯度下降法跟牛顿法比较

1.综述 机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.梯度下降的目的是直接求解目标函数极小值,而牛顿法则变相地通过求解目标函数一阶导为零的参数值,进而求得目标函数最小值.在逻辑回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法. 2 梯度下降法 2.1算法描述 1.确定误差范围和下降的步长,确定函数的导函数 2.while(|新值 -旧值| >误差) 3.       旧值=新值 4.       新值=初始值-步长*导函数

Python之逻辑回归模型来预测

建立一个逻辑回归模型来预测一个学生是否被录取. import numpy as np import pandas as pd import matplotlib.pyplot as plt import os path='data'+os.sep+'Logireg_data.txt' pdData=pd.read_csv(path,header=None,names=['Exam1','Exam2','Admitted']) pdData.head() print(pdData.head())

分类算法之逻辑回归(Logistic Regression

分类算法之逻辑回归(Logistic Regression) 1.二分类问题 现在有一家医院,想要对病人的病情进行分析,其中有一项就是关于良性\恶性肿瘤的判断,现在有一批数据集是关于肿瘤大小的,任务就是根据肿瘤的大小来判定是良性还是恶性.这就是一个很典型的二分类问题,即输出的结果只有两个值----良性和恶性(通常用数字0和1表示).如图1所示,我们可以做一个直观的判定肿瘤大小大于5,即为恶心肿瘤(输出为1):小于等于5,即为良性肿瘤(输出为0). 2.分类问题的本质 分类问题本质上属于有监督学习

逻辑回归模型

1. 逻辑回归是一种监督式的学习算法. [ 监督式学习算法有两组变量:预测变量(自变量x)和目标变量(因变量y),通过这些变量(x,y),搭建一个可以由已知的预测变量值x,得到对应的目标变量值y. 重复训练这个模型,直到能够在训练数据集上达到预定的准确度.] 2. 逻辑回归是一个分类算法. 利用已知的自变量,来预测一个离散型因变量的值(比如0/1, 是/否,真/假). 每个离散值的概率结果即是我们要预测的,可以通过一个逻辑函数(logit function),自然地,输出值在0到1之间. odd