Given an array of integers nums
and a positive integer k
, find whether it‘s possible to divide this array into k
non-empty subsets whose sums are all equal.
Example 1:
Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4 Output: True Explanation: It‘s possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
Note:
1 <= k <= len(nums) <= 16
.0 < nums[i] < 10000
.
给定一个整数数组
nums
和一个正整数 k
,找出是否有可能把这个数组分成 k
个非空子集,其总和都相等。
示例 1:
输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4 输出: True 说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。
注意:
1 <= k <= len(nums) <= 16
0 < nums[i] < 10000
16ms
1 class Solution { 2 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 3 4 // do a quick check to make sure its even possible 5 let sum = nums.reduce(0, +) 6 guard sum % k == 0 else { 7 return false 8 } 9 10 // sum we want to achieve for each partition 11 let partitionSum = sum / k 12 13 var isVisited = [Bool](repeating: false, count: nums.count) 14 15 return canPartitionKSubsets( 16 nums: nums, 17 numsIndex: 0, 18 k: k, 19 currentSum: 0, 20 expectedSum: partitionSum, 21 isVisited: &isVisited) 22 } 23 24 func canPartitionKSubsets( 25 nums: [Int], 26 numsIndex: Int, 27 k: Int, 28 currentSum: Int, 29 expectedSum: Int, 30 isVisited: inout [Bool] 31 ) -> Bool { 32 guard currentSum <= expectedSum else { 33 // exceed the expected sum so we can‘t form a partition 34 return false 35 } 36 37 if k == 0 { 38 return true 39 } 40 41 if currentSum == expectedSum { 42 return canPartitionKSubsets( 43 nums: nums, 44 numsIndex: 0, // start a brand new search from 0 45 k: k-1, // we found a partition! 46 currentSum: 0, // reset sum 47 expectedSum: expectedSum, 48 isVisited: &isVisited) 49 } else { 50 51 for i in numsIndex..<nums.count { 52 guard !isVisited[i] else { 53 // already used this number for a partition 54 continue 55 } 56 57 isVisited[i] = true // we will take this number for the partition 58 let canPartition = canPartitionKSubsets( 59 nums: nums, 60 numsIndex: i+1, 61 k: k, 62 currentSum: currentSum + nums[i], 63 expectedSum: expectedSum, 64 isVisited: &isVisited) 65 66 if canPartition { 67 return true 68 } 69 70 isVisited[i] = false 71 } 72 } 73 74 return false 75 } 76 }
32ms
1 class Solution { 2 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 3 guard !nums.isEmpty else { 4 return false 5 } 6 7 let totalSum = nums.reduce(0, +) 8 9 guard totalSum % k == 0 else { 10 return false 11 } 12 13 let sum = totalSum / k 14 15 var visited = [Bool](repeating: false, count: nums.count) 16 17 return canPartitionKSubsets(numbers: nums, k: k, startIndex:0, currentSum: 0, sum: sum, visited: &visited) 18 } 19 20 func canPartitionKSubsets(numbers: [Int], k: Int, startIndex: Int, currentSum: Int, sum: Int, visited: inout [Bool]) -> Bool { 21 guard currentSum <= sum else { 22 return false 23 } 24 25 if currentSum == sum { 26 27 if k == 1 { 28 return true 29 } else { 30 // we formed a partition, go try to form another one 31 return canPartitionKSubsets(numbers: numbers, k: k-1, startIndex: 0, currentSum: 0, sum: sum, visited: &visited) 32 } 33 } 34 // currentSum < sum 35 else { 36 37 for i in startIndex..<numbers.count { 38 let number = numbers[i] 39 40 if visited[i] { 41 continue 42 } 43 44 visited[i] = true 45 46 if canPartitionKSubsets(numbers: numbers, k: k, startIndex: i+1, currentSum: currentSum + number, sum: sum, visited: &visited) { 47 return true 48 } 49 50 visited[i] = false 51 } 52 } 53 54 return false 55 } 56 }
60ms
1 class Solution { 2 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 3 let sum = nums.reduce(0, +) 4 guard sum % k == 0 else { return false } 5 let bucketTarget = sum / k 6 let maxSubsets = (1<<nums.count) 7 var cache = [Bool?](repeating: nil, count: maxSubsets) 8 return canPartitionSubsets(nums, 0, bucketTarget, bucketTarget, &cache) 9 } 10 11 private func canPartitionSubsets( 12 _ nums: [Int], 13 _ bitset: Int, 14 _ remainingInBucket: Int, 15 _ bucketTarget: Int, 16 _ cache: inout [Bool?]) -> Bool { 17 if let cached = cache[bitset] { 18 return cached 19 } 20 let allElementBitSet = (1<<nums.count) - 1 21 if bitset == allElementBitSet && remainingInBucket == bucketTarget { 22 // All elements are set and all buckets are filled. 23 return true 24 } 25 for i in 0..<nums.count { 26 guard bitset & (1<<i) == 0 else { continue } 27 guard nums[i] <= remainingInBucket else { continue } 28 var updatedRemainingInBucket = remainingInBucket - nums[i] 29 if updatedRemainingInBucket == 0 { 30 updatedRemainingInBucket = bucketTarget // Create a new bucket 31 } 32 if canPartitionSubsets( 33 nums, 34 bitset | (1<<i), 35 updatedRemainingInBucket, 36 bucketTarget, 37 &cache) { 38 cache[bitset] = true 39 return true 40 } 41 } 42 cache[bitset] = false 43 return false 44 } 45 }
88ms
1 class Solution { 2 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 3 if nums.count == 0 && k == 0 { 4 return true 5 } 6 guard nums.count > 0, k > 0 else { 7 return false 8 } 9 var target = nums.reduce(0, +) 10 if target % k != 0 { 11 return false 12 } 13 target = target/k 14 15 16 func canPart(index:Int, remain:Int, curSum: Int, visited:[Int: Bool]) -> Bool { 17 if remain == 0 { 18 return true 19 } 20 21 if index == nums.count { 22 return false 23 } 24 25 if curSum == target { 26 return canPart(index:0, remain:remain - 1, curSum:0, visited:visited) 27 } else if curSum > target { 28 return false 29 } 30 31 for i in index..<nums.count { 32 var visited = visited 33 if visited[i] == true { 34 continue 35 } else { 36 visited[i] = true 37 if canPart(index:i, remain:remain, curSum: curSum + nums[i], visited: visited) { 38 return true 39 } 40 visited[i] = false 41 } 42 } 43 44 return false 45 } 46 47 return canPart(index:0, remain:k, curSum: 0, visited:[Int: Bool]()) 48 } 49 }
92ms
1 class Solution { 2 //We could use dfs. start from the first index, find the combination where num1 + num2 .. + num3 == target. Then start from index 0 with memory of which numbers has been used. 3 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 4 if nums.count == 0 && k == 0 { 5 return true 6 } 7 guard nums.count > 0, k > 0 else { 8 return false 9 } 10 var target = nums.reduce(0, +) 11 //Remember to check if the target can be fully divided by k 12 if target % k != 0 { 13 return false 14 } 15 target = target/k 16 17 func canPart(index:Int, remain:Int, curSum: Int, visited:[Int: Bool]) -> Bool { 18 if remain == 0 { 19 return true 20 } 21 22 if index == nums.count { 23 return false 24 } 25 26 if curSum == target { 27 return canPart(index: 0, remain: remain - 1, curSum: 0, visited: visited) 28 } else if curSum > target { 29 return false 30 } 31 32 for i in index..<nums.count { 33 var visited = visited 34 if visited[i] == true { 35 continue 36 } 37 visited[i] = true 38 if canPart(index: i, remain: remain, curSum: curSum + nums[i], visited: visited) { 39 return true 40 } 41 } 42 return false 43 } 44 return canPart(index:0, remain:k, curSum: 0, visited:[Int: Bool]()) 45 } 46 }
96ms
1 class Solution { 2 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 3 var sum = 0 4 for num in nums { 5 sum += num 6 } 7 if k <= 0 || sum % k != 0 { 8 return false 9 } 10 var visited = Array(repeating: false, count: nums.count) 11 return canPartition(nums, &visited, 0, k, 0, 0, sum / k) 12 } 13 14 private func canPartition(_ nums: [Int], _ visited: inout [Bool], _ start_index: Int, _ k: Int, _ cur_sum: Int, _ cur_num: Int, _ target: Int) -> Bool { 15 if k == 1 { 16 return true 17 } 18 if cur_sum == target && cur_num > 0 { 19 return canPartition(nums, &visited, 0, k - 1, 0, 0, target) 20 } 21 for i in start_index..<nums.count { 22 if !visited[i] { 23 visited[i] = true 24 let match = canPartition(nums, &visited, i + 1, k, cur_sum + nums[i], cur_num + 1, target) 25 if match { 26 return true 27 } 28 visited[i] = false 29 } 30 } 31 return false 32 } 33 }
Runtime: 244 ms
Memory Usage: 19.1 MB
1 class Solution { 2 func canPartitionKSubsets(_ nums: [Int], _ k: Int) -> Bool { 3 var nums = nums 4 nums.sort() 5 var sum:Int = nums.reduce(0,+) 6 if sum % k != 0 {return false} 7 var v:[Int] = [Int](repeating:0,count:k) 8 return helper(&nums, sum / k, &v, nums.count - 1) 9 } 10 11 func helper(_ nums:inout [Int],_ target:Int,_ v:inout [Int],_ idx:Int) -> Bool 12 { 13 if idx == -1 14 { 15 for t in v 16 { 17 if t != target {return false} 18 } 19 return true 20 } 21 var num:Int = nums[idx] 22 for i in 0..<v.count 23 { 24 if v[i] + num > target {continue} 25 v[i] += num 26 if helper(&nums, target, &v, idx - 1) 27 { 28 return true 29 } 30 v[i] -= num 31 } 32 return false 33 } 34 }
原文地址:https://www.cnblogs.com/strengthen/p/10502747.html
时间: 2024-10-09 16:05:53