redis中的缓存-缓存雪崩和缓存穿透

缓存雪崩

  缓存雪崩是由于原有缓存失效(过期),新缓存未到期间。所有请求都去查询数据库,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。

  1. 碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。

 public object GetProductListNew()
        {
            const int cacheTime = 30;
            const string cacheKey = "product_list";
            const string lockKey = cacheKey;

            var cacheValue = CacheHelper.Get(cacheKey);
            if (cacheValue != null)
            {
                return cacheValue;
            }
            else
            {
                lock (lockKey)
                {
                    cacheValue = CacheHelper.Get(cacheKey);
                    if (cacheValue != null)
                    {
                        return cacheValue;
                    }
                    else
                    {
                        cacheValue = GetProductListFromDB(); //这里一般是 sql查询数据。
                        CacheHelper.Add(cacheKey, cacheValue, cacheTime);
                    }
                }
                return cacheValue;
            }
        }    

  2. 加锁排队只是为了减轻数据库的压力,并没有提高系统吞吐量。假设在高并发下,缓存重建期间key是锁着的,这是过来1000个请求999个都在阻塞的。同样会导致用户等待超时,这是个治标不治本的方法。

  还有一个解决办法解决方案是:给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。

     public object GetProductListNew()
        {
            const int cacheTime = 30;
            const string cacheKey = "product_list";
            //缓存标记。
            const string cacheSign = cacheKey + "_sign";

            var sign = CacheHelper.Get(cacheSign);
            //获取缓存值
            var cacheValue = CacheHelper.Get(cacheKey);
            if (sign != null)
            {
                return cacheValue; //未过期,直接返回。
            }
            else
            {
                CacheHelper.Add(cacheSign, "1", cacheTime);
                ThreadPool.QueueUserWorkItem((arg) =>
                {
                    cacheValue = GetProductListFromDB(); //这里一般是 sql查询数据。
                    CacheHelper.Add(cacheKey, cacheValue, cacheTime*2); //日期设缓存时间的2倍,用于脏读。
                });

                return cacheValue;
            }
        } 

  缓存标记:记录缓存数据是否过期,如果过期会触发通知另外的线程在后台去更新实际key的缓存。

  缓存数据:它的过期时间比缓存标记的时间延长1倍,例:标记缓存时间30分钟,数据缓存设置为60分钟。 这样,当缓存标记key过期后,实际缓存还能把旧数据返回给调用端,直到另外的线程在后台更新完成后,才会返回新缓存。

  这样做后,就可以一定程度上提高系统吞吐量。

缓存穿透

  缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。

  解决的办法就是:如果查询数据库也为空,直接设置一个默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴。

        public object GetProductListNew()
        {
            const int cacheTime = 30;
            const string cacheKey = "product_list";

            var cacheValue = CacheHelper.Get(cacheKey);
            if (cacheValue != null)
                return cacheValue;

            cacheValue = CacheHelper.Get(cacheKey);
            if (cacheValue != null)
            {
                return cacheValue;
            }
            else
            {
                cacheValue = GetProductListFromDB(); //数据库查询不到,为空。

                if (cacheValue == null)
                {
                    cacheValue = string.Empty; //如果发现为空,设置个默认值,也缓存起来。
                }
                CacheHelper.Add(cacheKey, cacheValue, cacheTime);

                return cacheValue;
            }
        }    

  把空结果,也给缓存起来,这样下次同样的请求就可以直接返回空了,即可以避免当查询的值为空时引起的缓存穿透。同时也可以单独设置个缓存区域存储空值,对要查询的key进行预先校验,然后再放行给后面的正常缓存处理逻辑。

缓存预热

  缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样避免,用户请求的时候,再去加载相关的数据。

  解决思路:

    1,直接写个缓存刷新页面,上线时手工操作下。

    2,数据量不大,可以在WEB系统启动的时候加载。

    3,定时刷新缓存,

缓存更新

 缓存的清理机制可以参考文章:https://www.cnblogs.com/ricklz/p/10742560.html

原文地址:https://www.cnblogs.com/ricklz/p/10800302.html

时间: 2024-10-04 18:24:32

redis中的缓存-缓存雪崩和缓存穿透的相关文章

Redis系列十:缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

一.缓存雪崩 缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机.从而形成一系列连锁反应,造成整个系统崩溃. 缓存正常从Redis中获取,示意图如下: 缓存失效瞬间示意图如下: 缓存雪崩的解决方案: (1)碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队,伪代码如下: 加锁排队只是为了

redis缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

一.缓存雪崩 缓存雪崩我们可以简单的理解为:由于原有缓存失效,新缓存未到期间(例如:我们设置缓存时采用了相同的过期时间,在同一时刻出现大面积的缓存过期),所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机.从而形成一系列连锁反应,造成整个系统崩溃. 缓存正常从Redis中获取,示意图如下: 缓存失效瞬间示意图如下: 缓存雪崩的解决方案: (1)碰到这种情况,一般并发量不是特别多的时候,使用最多的解决方案是加锁排队,伪代码如下: 加锁排队只是为了

[python]mysql数据缓存到redis中 取出时候编码问题

描述: 一个web服务,原先的业务逻辑是把mysql查询的结果缓存在redis中一个小时,加快请求的响应. 现在有个问题就是根据请求的指定的编码返回对应编码的response. 首先是要修改响应的body的编码,由于mysql去出来就是unicode,所以直接使用 ``` content = content.encode(charset) ``` 来转化,然后在请求header中也加入字符编码. 解决: 可是这样测试下来,有的请求可以返回正确的编码格式,有的还是乱码,最后猜测是redis中数据类

Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级

Redis之缓存雪崩.缓存穿透.缓存预热.缓存更新.缓存降级 1.缓存雪崩 发生场景:当Redis服务器重启或者大量缓存在同一时期失效时,此时大量的流量会全部冲击到数据库上面,数据库有可能会因为承受不住而宕机 解决办法: 1)随机均匀设置失效时间 2)设置过期标志更新缓存 3)并发量不是特别多的时候,使用最多的解决方案是加锁排队 2.缓存穿透 发生场景:是指查询一个数据库一定不存在的数据.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并

Redis(一)缓存雪崩,缓存穿透,热点key的处理

1 缓存雪崩 缓存雪崩产生的原因 缓存雪崩通俗简单的理解就是:由于原有缓存失效(或者数据未加载到缓存中),新缓存未到期间(缓存正常从Redis中获取,如下图)所有原本应该访问缓存的请求都去查询数据库了,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机,造成系统的崩溃. 缓存失效的时候如下图: 缓存失效时的雪崩效应对底层系统的冲击非常可怕!那有什么办法来解决这个问题呢?基本解决思路如下: 第一,大多数系统设计者考虑用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,避免

redis教程(三)-----redis缓存雪崩、缓存穿透、缓存预热

缓存雪崩 概念 缓存雪崩是由于原有缓存失效(过期),新缓存未到期间.所有请求都去查询数据库,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机.从而形成一系列连锁反应,造成整个系统崩溃. 解决方案 加锁排队 一般并发量不是特别多的时候,使用最多的解决方案是加锁排队. public object GetProductListNew() { const int cacheTime = 30; const string cacheKey = "product_list"; const

22_redis缓存配置及设置把session存储在redis中

django配置redis缓存 1. 安装django-redis包 pip install -i https://pypi.douban.com/simple django-redis 2. 在settings.py 文件中,指定redis缓存 # 配置redis缓存 CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION":

Memcached之缓存雪崩,缓存穿透,缓存预热,缓存算法(7)

缓存雪崩 缓存雪崩可能是因为数据未加载到缓存中,或者缓存同一时间大面积的失效,从而导致所有请求都去查数据库,导致数据库CPU和内存负载过高,甚至宕机. 解决思路: 1,采用加锁计数,或者使用合理的队列数量来避免缓存失效时对数据库造成太大的压力.这种办法虽然能缓解数据库的压力,但是同时又降低了系统的吞吐量. 2,分析用户行为,尽量让失效时间点均匀分布.避免缓存雪崩的出现. 3,如果是因为某台缓存服务器宕机,可以考虑做主备,比如:redis主备,但是双缓存涉及到更新事务的问题,update可能读到脏

Memcached之缓存雪崩,缓存穿透,缓存预热,缓存算法

缓存雪崩 缓存雪崩可能是因为数据未加载到缓存中,或者缓存同一时间大面积的失效,从而导致所有请求都去查数据库,导致数据库CPU和内存负载过高,甚至宕机. 解决思路: 1,采用加锁计数,或者使用合理的队列数量来避免缓存失效时对数据库造成太大的压力.这种办法虽然能缓解数据库的压力,但是同时又降低了系统的吞吐量. 2,分析用户行为,尽量让失效时间点均匀分布.避免缓存雪崩的出现. 3,如果是因为某台缓存服务器宕机,可以考虑做主备,比如:Redis主备,但是双缓存涉及到更新事务的问题,update可能读到脏