ubuntu16.04 使用tensorflow object detection训练自己的模型

一、构建自己的数据集

1、格式必须为jpg、jpeg或png。

2、在models/research/object_detection文件夹下创建images文件夹,在images文件夹下创建train和val两个文件夹,分别存放训练集图片和测试集图片。

3、下载labelImg目标检测标注工具

(1)下载地址:https://github.com/tzutalin/labelImg

(2)由于LabelImg是用Python编写的,并使用Qt作为其图形界面。

因此,python2安装qt4:

sudo apt-get install pyqt4-dev-tools

python3安装qt5:

sudo apt-get install pyqt5-dev-tools

(3)安装lxml

sudo apt-get install python-lxml

(4)解压,进入LabelImg-master文件夹,使用make编译

cd labelImg-master
make all

(5)打开LabelImg

python labelImg.py

(6)使用LabelImg

  • 使用Ctrl + u分别加载models/research/object_detection/images中train和val两个文件夹里的图像。
  • 使用Ctrl + r选择xml文件保存的地址,对应地选择保存在train和val文件夹即可。
  • 使用w创建一个矩形框,标注完一张图片中的所有物体后,Ctrl + s保存即可生成该图片对应的xml文件。

4、创建xml_to_csv.py并运行

分别将train和val文件夹下的xml文件生成对应的csv文件,并将csv文件拷贝到models/research/object_detection/data中。

xml_to_csv.py如下,以train为例。

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
pathStr = r‘/home/somnus/boat/train‘
os.chdir(pathStr)
def xml_to_csv(path):
    xml_list = []
    for xml_file in glob.glob(path + ‘/*.xml‘):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        for member in root.findall(‘object‘):
            value = (root.find(‘filename‘).text,
                     int(root.find(‘size‘).find(‘width‘).text),
                     int(root.find(‘size‘).find(‘height‘).text),
                     member.find(‘name‘).text,
                     int(member.find(‘bndbox‘).find(‘xmin‘).text),
                     int(member.find(‘bndbox‘).find(‘ymin‘).text),
                     int(member.find(‘bndbox‘).find(‘xmax‘).text),
                     int(member.find(‘bndbox‘).find(‘ymax‘).text)
                     )
            xml_list.append(value)
    column_name = [‘filename‘, ‘width‘, ‘height‘, ‘class‘, ‘xmin‘, ‘ymin‘, ‘xmax‘, ‘ymax‘]
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df
def main():
    #image_path = os.path.join(os.getcwd(), ‘annotations‘)
    image_path = pathStr
    xml_df = xml_to_csv(image_path)
    xml_df.to_csv(‘boat_train.csv‘, index=None)
    print(‘Successfully converted xml to csv.‘)
main()

5、创建generate_tfrecord.py并运行,以train为例,从而生成对应的TFrecord数据文件。

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

#########根据需要修改路径
os.chdir(‘/home/somnus/models/reserach/object_detection‘)

flags = tf.app.flags
flags.DEFINE_string(‘csv_input‘, ‘‘, ‘Path to the CSV input‘)
flags.DEFINE_string(‘output_path‘, ‘‘, ‘Path to output TFRecord‘)
flags.DEFINE_string(‘image_dir‘, ‘‘, ‘Path to images‘)
FLAGS = flags.FLAGS

####根据需要修改标签
def class_text_to_int(row_label):
    if row_label == ‘car‘:
        return 1
    else:
        None

def split(df, group):
    data = namedtuple(‘data‘, [‘filename‘, ‘object‘])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]

def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, ‘{}‘.format(group.filename)), ‘rb‘) as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode(‘utf8‘)
    image_format = b‘jpg‘
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row[‘xmin‘] / width)
        xmaxs.append(row[‘xmax‘] / width)
        ymins.append(row[‘ymin‘] / height)
        ymaxs.append(row[‘ymax‘] / height)
        classes_text.append(row[‘class‘].encode(‘utf8‘))
        classes.append(class_text_to_int(row[‘class‘]))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        ‘image/height‘: dataset_util.int64_feature(height),
        ‘image/width‘: dataset_util.int64_feature(width),
        ‘image/filename‘: dataset_util.bytes_feature(filename),
        ‘image/source_id‘: dataset_util.bytes_feature(filename),
        ‘image/encoded‘: dataset_util.bytes_feature(encoded_jpg),
        ‘image/format‘: dataset_util.bytes_feature(image_format),
        ‘image/object/bbox/xmin‘: dataset_util.float_list_feature(xmins),
        ‘image/object/bbox/xmax‘: dataset_util.float_list_feature(xmaxs),
        ‘image/object/bbox/ymin‘: dataset_util.float_list_feature(ymins),
        ‘image/object/bbox/ymax‘: dataset_util.float_list_feature(ymaxs),
        ‘image/object/class/text‘: dataset_util.bytes_list_feature(classes_text),
        ‘image/object/class/label‘: dataset_util.int64_list_feature(classes),
    }))
    return tf_example

def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

    #####根据需要修改训练集或测试集图片路径
    path = os.path.join(‘images/train‘)

    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, ‘filename‘)
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print(‘Successfully created the TFRecords: {}‘.format(output_path))

if __name__ == ‘__main__‘:
    tf.app.run()

运行generate_tfrecord.py

python generate_tfrecord.py --csv_input=data/car_train.csv  --output_path=data/car_train.record
python generate_tfrecord.py --csv_input=data/car_val.csv  --output_path=data/car_val.record

二、准备配置文件

1、在models/research/object_detection/data文件夹下创建mymodel_label_map.pbtxt文件,可以模仿pet_label_map.pbtxt,内容修改为自己模型识别的标签,从1开始编号。

item {
  id: 1
  name: ‘car‘
}

2、在object_detection下创建training文件夹,在models/research/object_detection/samples/configs中找到需要的模型文件,并拷贝到training文件夹下,以ssd_mobilenet_v1_coco.config为例。

model {
  ssd {

  #根据需要修改训练的数据类数
    num_classes: 1

    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: ‘ssd_mobilenet_v1‘
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {

 #根据需要修改训练批次
  batch_size: 24

  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  #这两行注释
  #fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
  #from_detection_checkpoint: true

  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {

  #修改路径
  input_path: "data/car_train.record"

  }

 #修改路径
  label_map_path: "data/mymodel_label_map.pbtxt"

}

eval_config: {
  num_examples: 200
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
   tf_record_input_reader {

   #修改路径
   input_path: "data/car_val.record"

}

  #修改路径
  label_map_path: "data/mymodel_label_map.pbtxt"

  shuffle: false
  num_readers: 1
}

3、在models/research/object_detection下运行

python ./legacy/train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config

三、生成可被调用的模型

python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix training/model.ckpt-8004 --output_directory car_inference_graph

  其中,model.ckpt-后面的数字可以看training文件夹下的文件,选个最大的数字;--output_directory=指定的是模型生成的文件夹名字,可根据需要修改。

参考

https://www.cnblogs.com/raorao1994/p/8854941.html

https://www.smwenku.com/a/5b898fc42b71775d1ce27004/zh-cn/

原文地址:https://www.cnblogs.com/tyty-Somnuspoppy/p/10194433.html

时间: 2024-09-29 16:00:15

ubuntu16.04 使用tensorflow object detection训练自己的模型的相关文章

谷歌开源的TensorFlow Object Detection API视频物体识别系统实现(二)[超详细教程] ubuntu16.04版本

本节对应谷歌开源Tensorflow Object Detection API物体识别系统 Quick Start步骤(一): Quick Start: Jupyter notebook for off-the-shelf inference 本节步骤较为简单,具体操作如下: 1.在第一节安装好jupyter之后,在ternimal终端进入到models文件夹目录下,执行命令: jupyter-notebook 2.会在网页打开Jupyter访问object_detection文件夹,进入obj

TensorFlow使用object detection训练并识别自己的模型

使用object detection训练并识别自己的模型 1.安装tensorflow(version>=1.4.0) 2.部署tensorflow models - 在这里下载 - 解压并安装 - 解压后重命名为models复制到tensorflow/目录下 - 在linux下 - 进入tensorflow/models/research/目录,运行protoc object_detection/protos/*.proto --python_out=. - 在~/.bashrc file.中

TensorFlow object detection API

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/running_pets.md 1. 获取数据Oxford-IIIT Pets Dataset # From tensorflow/models/research/ wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz wget http://www.robo

TensorFlow object detection API应用二

前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张钧甯的图片,存放在/models/research/object_detection下新建的images文件夹内,images文件夹下新建train和test两个文件夹,然后将120分为100和20张分别存放在train和test中. 接下来使用 LabelImg 这款小软件,对train和test

Tensorflow object detection API 搭建属于自己的物体识别模型

一.下载Tensorflow object detection API工程源码 网址:https://github.com/tensorflow/models,可通过Git下载,打开Git Bash,输入git clone https://github.com/tensorflow/models.git进行下载. 二.标记需要训练的图片 ①.在第一步下载的工程文件models\research\object_detection目录下,建立一个my_test_images用来放测试test和训练t

Install Tensorflow object detection API in Anaconda (Windows)

This blog is to explain how to install Tensorflow object detection API in Anaconda in Windows 10 as well as how to train train a convolution neural network to do object detection on your own data set. Steps: 1. Installation and Configuration Install

Ubuntu16.04安装tensorflow+安装opencv+安装openslide+安装搜狗输入法

Ubuntu16.04在cuda以及cudnn安装好之后,安装tensorflow,tensorflow以及opencv可以到网上下载对应的安装包并且直接在安装包所在的路径下直接通过pip与conda进行安装,如下图所示: 前提是要下载好安装包.安装好tensorflow之后还需要进行在~/.bashrc文件中添加系统路径,如下图所示 Openslide是医学图像一个重要的库,这里给出三条命令进行安装 sudo apt-get install openslide-tools sudo apt-g

#tensorflow object detection api 源码分析

前言 Tensorflow 推出的 Object Detection API是一套抽象程度极高的目标检测框架,可以快速用于生产部署.但网络上大多数相关的中英文文章均只局限于应用层面的分析,对于该套框架的算法实现源码没有针对性的分析文章.对于选择tensorflow作为入门框架的深度学习新手,不仅应注重于算法本身的理解,更应注重算法的编码实现.本人也是刚入门深度学习的新手,深深困扰于tensorflow 目标检测框架的抽象代码,因此花费了大量时间分析源码,希望能对博友有益,同时受限于眼界,文章中必

[Tensorflow] Object Detection API - build your training environment

Prepare protoc Download Protocol Buffers Create folder: protoc and unzip it. [email protected]UX303UB$ ls models Others protoc train_data [email protected]-UX303UB$ ls protoc/ bin include readme.txt [email protected]-UX303UB$ ls protoc/bin/ protoc Pr