HappyLeetcode39:Factorial Trailing Zeroes

Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

 

这个是我的代码,但是超时

class Solution {
public:
    int trailingZeroes(int n) {
        if (n <= 4)
            return 0;
        int count = 0;
        int multi = 1;//计算所需内容累乘的积
        for (int i = 5; i <= n; i += 5)
        {
            multi *= i;
            while (multi % 5 == 0)
            {
                multi /= 5;
                count++;
            }
        }
        return count;
    }
};

 

网上抄的别人的答案

class Solution {

public:

    int trailingZeroes(int n) 
    {

    int c = 0;

    for( ; n > 4; c += (n/=5) );

    return c;

    }

};

class Solution {
public:
    int trailingZeroes(int n)
    {
    int c = 0;
    for( ; n > 4; c += (n/=5) );
    return c;
    }
};

时间: 2024-10-15 00:11:10

HappyLeetcode39:Factorial Trailing Zeroes的相关文章

LeetCode172 Factorial Trailing Zeroes. LeetCode258 Add Digits. LeetCode268 Missing Number

数学题 172. Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. (Easy) 分析:求n的阶乘中末位0的个数,也就是求n!中因数5的个数(2比5多),简单思路是遍历一遍,对于每个数,以此除以5求其因数5的个数,但会超时. 考虑到一个数n比他小

[LeetCode]172.Factorial Trailing Zeroes

题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 朴素解法: 首先求出n!,然后计算末尾0的个数.(重复÷10,直到余数非0) 该解法在输入的数字稍大时就会导致阶乘得数溢出,不足取. O(logn)解法: 考虑n!的质数因子. 后缀0总是由质因子2和质因子5相乘得来的.如果我们可以计数

Factorial Trailing Zeroes

Factorial Trailing Zeroes Total Accepted: 44612 Total Submissions: 144778 Difficulty: Easy Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. (M) Number of Digit One n!的结果中0的个

LeetCode Day4——Factorial Trailing Zeroes

1 /* 2 * Problem 172: Factorial Trailing Zeroes 3 * Given an integer n, return the number of trailing zeroes in n!. 4 * Note: Your solution should be in logarithmic time complexity. 5 */ 6 7 /* 8 * Solution 1 9 * 对于每一个数字,累计计算因子10.5.2数字出现的个数,结果等于10出现的

【LeetCode】Factorial Trailing Zeroes (2 solutions)

Factorial Trailing Zeroes Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. 对n!做质因数分解n!=2x*

LeetCode 172. 阶乘后的零(Factorial Trailing Zeroes)

172. 阶乘后的零 LeetCode172. Factorial Trailing Zeroes 题目描述 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例 1: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 示例 2: 输入: 5 输出: 1 解释: 5! = 120, 尾数中有 1 个零. 说明: 你算法的时间复杂度应为 O(log n) . Java 实现 class Solution { // 递归思路 public static int trailingZe

172. Factorial Trailing Zeroes

1. 问题描述 Given an integer n, return the number of trailing zeroes in n!.Note: Your solution should be in logarithmic time complexity.Tags: MathSimilar Problems: (H) Number of Digit One 2. 解题思路 分解质因子, 当且仅当 因子中出现 一对 (2,5)时, 最后结果会增加一个 trailing zero.1. 2的

[LeetCode] Factorial Trailing Zeroes 阶乘末尾0

Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. Credits:Special thanks to @ts for adding this problem and creating all test cases. Hide Tags Math 这题应该是2014年年底修改该过测试样本,之前的通过

Leetcode: Factorial Trailing Zeroes

Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 解析: 只有2和5相乘才会出现0,其中整十也可以看做是2和5相乘的结果,所以,可以在n之前看看有多少个2以及多少个5就行了,又发现2的数量一定多于5的个数,于是我们只看n前面有多少个5就行了,于是n/5就得到了5的个数,还有一点要注意的就是25这种