[NOIP2014] 提高组 洛谷P2312 解方程

题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

输出格式:

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。

输入输出样例

输入样例#1:

2 10
1
-2
1

输出样例#1:

1
1

输入样例#2:

2 10
2
-3
1

输出样例#2:

2
1
2

输入样例#3:

2 10
1
3
2
 

输出样例#3:

0

说明

30%:0<n<=2,|ai|<=100,an!=0,m<100

50%:0<n<=100,|ai|<=10^100,an!=0,m<100

70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000

100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000

直接计算无疑是不可能做到的。

将每一项的系数都模一个质数,若一个数是方程的解,那么在模的意义下它也是方程的解(但反过来不一定)。

为了解决这个“不一定”的问题,多选几个质数,若一个数在不同模的意义下都是方程的解,那么它有极大的几率就是原方程的解了。

↑如果素数选得不好,这题还是会WA。

↑所以这是道拼RP的题。

 1 /*by SilverN*/
 2 #include<algorithm>
 3 #include<iostream>
 4 #include<cstring>
 5 #include<cstdio>
 6 #include<cmath>
 7 #include<vector>
 8 using namespace std;
 9 const int mod[8]={0,13,7901,3947,131,6977,22877,49997};
10 char s[105][1000010];
11 int n,m;
12 int num[9][120];
13 bool solve(int od,int x){
14     int i,j;
15     long long tmp=0;
16     long long pw=1;
17     for(i=0;i<=n;++i){
18 //        printf("%d %d\n",num[od][i],pw);
19         if(s[i][0]==‘-‘) tmp=(tmp-pw*num[od][i])%mod[od];
20         else tmp=(tmp+pw*num[od][i])%mod[od];
21         pw=pw*x%mod[od];
22     }
23     while(tmp<0) tmp+=mod[od];
24     if(!tmp)return true;
25     return false;
26 }
27 int res[1000010];
28 int ans[1000010],act=0;
29 int main(){
30     int i,j,k;
31     scanf("%d%d",&n,&m);
32     for(i=0;i<=n;++i)
33         scanf("%s",s[i]);
34     int len[101];
35     for(i=0;i<=n;++i)len[i]=strlen(s[i]);
36     for(k=1;k<=7;++k)
37         for(i=0;i<=n;++i){
38             for(j=0;j<len[i];++j){
39                 if(s[i][j]==‘-‘)continue;
40                 num[k][i]=num[k][i]*10+s[i][j]-‘0‘;
41                 num[k][i]%=mod[k];
42             }
43         }
44     for(k=1;k<=7;++k)
45         for(i=0;i<mod[k] && i<=m;++i){
46             if(!solve(k,i))continue;
47             ++res[i];
48             for(j=i+mod[k];j<=m;j+=mod[k]){
49 //                if(solve(k,j))
50                 res[j]++;
51             }
52         }
53     for(i=1;i<=m;++i)
54         if(res[i]==7)ans[++act]=i;
55     printf("%d\n",act);
56     for(i=1;i<=act;++i)printf("%d\n",ans[i]);
57     return 0;
58 }
时间: 2024-10-16 05:27:03

[NOIP2014] 提高组 洛谷P2312 解方程的相关文章

NOIP2014/洛谷P2312 解方程

NOIP2014/洛谷P2312 解方程 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数

[NOIP2014] 提高组 洛谷P2038 无线网络发射器选址

题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻的平行街道之间的距离都是恒定值 1 .东西向街道从北到南依次编号为0,1,2…128 , 南北向街道从西到东依次编号为0,1,2…128 . 东西向街道和南北向街道相交形成路口,规定编号为x 的南北向街道和编号为y 的东西向街道形成的路口的坐标是(x , y ). 在 某 些 路口存在一定数量的公共

洛谷 P2312 解方程

题目描述 已知多项式方程: $a_0+a_1x+a_2x^2+..+a_nx^n=0$//用LaTex好看多了 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an 输出格式: 输出文件名为equation .out . 第一行输出方程在[1, m ] 内的整数解的个

[NOIP2014] 提高组 洛谷P2296 寻找道路

题目描述 在有向图G 中,每条边的长度均为1 ,现给定起点和终点,请你在图中找一条从起点到终点的路径,该路径满足以下条件: 1 .路径上的所有点的出边所指向的点都直接或间接与终点连通. 2 .在满足条件1 的情况下使路径最短. 注意:图G 中可能存在重边和自环,题目保证终点没有出边. 请你输出符合条件的路径的长度. 输入输出格式 输入格式: 输入文件名为road .in. 第一行有两个用一个空格隔开的整数n 和m ,表示图有n 个点和m 条边. 接下来的m 行每行2 个整数x .y ,之间用一个

[NOIP2014] 提高组 洛谷P1941 飞扬的小鸟

题目描述 Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败. 为了简化问题,我们对游戏规则进行了简化和改编: 游戏界面是一个长为n ,高为 m 的二维平面,其中有k 个管道(忽略管道的宽度). 小鸟始终在游戏界面内移动.小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成. 小鸟每个单位时间沿横坐标方向右移的距离为1 ,竖直移动

[NOIP2014] 提高组 洛谷P1351 联合权值

题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离.对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu ×Wv 的联合权值. 请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少? 输入输出格式 输入格式: 输入文件名为link .in. 第一行包含1 个整数n . 接下来n - 1 行,

[NOIP2004] 提高组 洛谷P1092 虫食算

题目描述 所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母.来看一个简单的例子: 43#9865#045 +8468#6633 44445509678 其中#号代表被虫子啃掉的数字.根据算式,我们很容易判断:第一行的两个数字分别是5和3,第二行的数字是5. 现在,我们对问题做两个限制: 首先,我们只考虑加法的虫食算.这里的加法是N进制加法,算式中三个数都有N位,允许有前导的0. 其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用

NOIP2010 提高组 洛谷P1525 关押罪犯

刚才做并查集想到了这道以前做的题,干脆一并放上来 题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整数值)来表示某两名罪犯之间的仇恨程度,怨气值越大,则这两名罪犯之间的积怨越多.如果两名怨气值为c 的罪犯被关押在同一监狱,他们俩之间会发生摩擦,并造成影响力为c 的冲突事件. 每年年末,警察局会将本年内监狱中的所有冲突事件按影响力从大到小排成一个列表,然后上报到

[NOIP2012] 提高组 洛谷P1082 同余方程

题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正整数 x0,即最小正整数解.输入数据保证一定有解. 输入输出样例 输入样例#1: 3 10 输出样例#1: 7 说明 [数据范围] 对于 40%的数据,2 ≤b≤ 1,000: 对于 60%的数据,2 ≤b≤ 50,000,000: 对于 100%的数据,2 ≤a, b≤ 2,000,000,000