JDK源码学习系列06----Vector

                                            JDK源码学习系列06----Vector

1.Vector简介

Vector的内部是数组实现的,它和ArrayList非常相似,最大的不同就是 Vector 是线程安全(同步)的。

public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable

Vector继承于AbstractList,实现了List, RandomAccess, Cloneable,java.io.Serializable这些接口。

Vector 继承了AbstractList,实现了List ,支持相关的添加、删除、修改、遍历等功能。

Vector 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在Vector    中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。

Vector 实现了Cloneable接口,即实现clone()函数。它能被克隆。

2.Vector的成员变量

    protected Object[] elementData;//内部实现数组
    protected int elementCount;//vector内容的实际长度
    protected int capacityIncrement;//容量递增值
    private static final long serialVersionUID = -2767605614048989439L;//序列id

3.Vector的构造函数

    public Vector(int initialCapacity, int capacityIncrement) {
 	super();
        if (initialCapacity < 0)//若容量递增值小于0,则抛出异常
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
	this.elementData = new Object[initialCapacity];//elementData数组,容量为initialCapacity
	this.capacityIncrement = capacityIncrement;//扩容时容量的递增值
    }

    public Vector(int initialCapacity) {
	this(initialCapacity, 0);
    }

    public Vector() {// Vector的默认容量为10
	this(10);
    }
    public Vector(Collection<? extends E> c) {//初始化一个包含集合的Vector
	elementData = c.toArray();
	elementCount = elementData.length;
	// c.toArray might (incorrectly) not return Object[] (see 6260652)
	if (elementData.getClass() != Object[].class)
	    elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
    }

4.Vector的成员函数

很多成员函数都用synchronized关键字修饰了的,即表示是同步的,线程安全的。关于synchronized关键字,请见:java  synchronized  关键字

    public synchronized void copyInto(Object[] anArray) {//把Vector复制到anArray数组中
	System.arraycopy(elementData, 0, anArray, 0, elementCount);//数组的复制都是用的System.arraycopy(),Arrays.copyof()的内部也是用的System.arraycopy().
    }

    public synchronized void trimToSize() {//把容量缩小到刚好等于vector的实际长度
	modCount++;//!!线程安全的类的源码中也有统计结构变化次数的modCount
	int oldCapacity = elementData.length;
	if (elementCount < oldCapacity) {
            elementData = Arrays.copyOf(elementData, elementCount);
	}
    }

    public synchronized void ensureCapacity(int minCapacity) {//扩容,调用确认扩容帮助的方法
	modCount++;
	ensureCapacityHelper(minCapacity);
    }

    private void ensureCapacityHelper(int minCapacity) {//确认扩容的帮助方法
	int oldCapacity = elementData.length;
	if (minCapacity > oldCapacity) {//<strong>①如果传入的参数大于原始容量:如果容量增幅值大于0,则增加容量增幅值;若容量增幅值小于0,则容量直接扩大两倍</strong>
	    Object[] oldData = elementData;
	    int newCapacity = (capacityIncrement > 0) ?
		(oldCapacity + capacityIncrement) : (oldCapacity * 2);
    	    if (newCapacity < minCapacity) {//<strong>②如果向上面那样增加后还是小于传入的参数:参数作为新的容量</strong>
		newCapacity = minCapacity;
	    }
            elementData = Arrays.copyOf(elementData, newCapacity);
	}
    }

    public synchronized void setSize(int newSize) {//设置容量值
	modCount++;
	if (newSize > elementCount) {//若容量值参数大于原始的容量,则扩容
	    ensureCapacityHelper(newSize);
	} else {//若传入的容量值小于原始容量,即<strong>缩容:多出的后面部分全部置为null</strong>
	    for (int i = newSize ; i < elementCount ; i++) {
		elementData[i] = null;
	    }
	}
	elementCount = newSize;//把传入的容量设置我新的容量
    }

    public synchronized int capacity() {//返回容量
	return elementData.length;
    }

    public synchronized int size() {//返回实际长度
	return elementCount;
    }

    public synchronized boolean isEmpty() {//判断是否为空
	return elementCount == 0;
    }

    public Enumeration<E> elements() {//<span style="line-height: 1.5; font-family: 'Courier New'; white-space: pre-wrap; ">返回Vector中全部元素对应的Enumeration</span>
	return new Enumeration<E>() {//<span style="line-height: 1.5; font-family: 'Courier New'; white-space: pre-wrap; ">通过匿名内部类实现Enumeration</span>
	    int count = 0;

	    public boolean hasMoreElements() {//是否存在下一元素
		return count < elementCount;
	    }

	    public E nextElement() {//获取下一元素
		synchronized (Vector.this) {
		    if (count < elementCount) {
			return (E)elementData[count++];
		    }
		}
		throw new NoSuchElementException("Vector Enumeration");
	    }
	};
    }

    public boolean contains(Object o) {//是否包含
	return indexOf(o, 0) >= 0;
    }

    public int indexOf(Object o) {//定位索引
	return indexOf(o, 0);
    }

    public synchronized int indexOf(Object o, int index) {
	if (o == null) {//一定不要忽略了null的情况
	    for (int i = index ; i < elementCount ; i++)
		if (elementData[i]==null)
		    return i;
	} else {
	    for (int i = index ; i < elementCount ; i++)
		if (o.equals(elementData[i]))
		    return i;
	}
	return -1;
    }

    public synchronized int lastIndexOf(Object o) {
	return lastIndexOf(o, elementCount-1);
    }

    public synchronized int lastIndexOf(Object o, int index) {
        if (index >= elementCount)//时刻注意边界
            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);

	if (o == null) {//不要忘了null!!!
	    for (int i = index; i >= 0; i--)
		if (elementData[i]==null)
		    return i;
	} else {
	    for (int i = index; i >= 0; i--)
		if (o.equals(elementData[i]))
		    return i;
	}
	return -1;
    }

    public synchronized E elementAt(int index) {//得到某个索引对应的值
	if (index >= elementCount) {
	    throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
	}

        return (E)elementData[index];//即数组下标对应的值,注意向下转型
    }

    public synchronized E firstElement() {//获取第一个元素
	if (elementCount == 0) {//!!!!!!!!!!!特殊情况的考虑啊!!!!!!!!!!!!
	    throw new NoSuchElementException();//若vector为空则抛出异常
	}
	return (E)elementData[0];
    }

    public synchronized E lastElement() {
	if (elementCount == 0) {
	    throw new NoSuchElementException();
	}
	return (E)elementData[elementCount - 1];
    }

    public synchronized void setElementAt(E obj, int index) {
	if (index >= elementCount) {
	    throw new ArrayIndexOutOfBoundsException(index + " >= " +
						     elementCount);
	}
	elementData[index] = obj;
    }

    public synchronized void removeElementAt(int index) {//移除某个元素
	modCount++;
	if (index >= elementCount) {
	    throw new ArrayIndexOutOfBoundsException(index + " >= " +
						     elementCount);
	}
	else if (index < 0) {
	    throw new ArrayIndexOutOfBoundsException(index);
	}
	int j = elementCount - index - 1;//需要移动的位于index后的元素个数
	if (j > 0) {
	    System.arraycopy(elementData, index + 1, elementData, index, j);
	}
	elementCount--;
	elementData[elementCount] = null;//gc会自动回收掉最后一个空出来的位置
    }

    public synchronized void insertElementAt(E obj, int index) {//插入元素
	modCount++;
	if (index > elementCount) {
	    throw new ArrayIndexOutOfBoundsException(index
						     + " > " + elementCount);
	}
	ensureCapacityHelper(elementCount + 1);//插入元素需要先扩容
	System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);//把elementData中的元素从index位置移到从index+1,移动的长度为elementCount-index.即空出一个来插入元素
	elementData[index] = obj;
	elementCount++;
    }

    public synchronized void addElement(E obj) {//在vector尾部添加元素
	modCount++;
	ensureCapacityHelper(elementCount + 1);//添加元素时先扩容
	elementData[elementCount++] = obj;
    }

    public synchronized boolean removeElement(Object obj) {//移除某个元素,先得到元素的索引在根据索引移除
	modCount++;
	int i = indexOf(obj);
	if (i >= 0) {
	    removeElementAt(i);
	    return true;
	}
	return false;
    }

    public synchronized void removeAllElements() {//移除所有,把每个元素都置为null
        modCount++;
	// Let gc do its work
	for (int i = 0; i < elementCount; i++)
	    elementData[i] = null;

	elementCount = 0;
    }

    public synchronized Object clone() {//克隆Vector
	try {
	    Vector<E> v = (Vector<E>) super.clone();
	    v.elementData = Arrays.copyOf(elementData, elementCount);//将vector中的元素全部拷贝到v中
	    v.modCount = 0;
	    return v;
	} catch (CloneNotSupportedException e) {
	    // this shouldn't happen, since we are Cloneable
	    throw new InternalError();
	}
    }

    public synchronized Object[] toArray() {// 返回数组
        return Arrays.copyOf(elementData, elementCount);
    }

    public synchronized <T> T[] toArray(T[] a) {
        if (a.length < elementCount)//若a的长度小于vector的实际长度,则新建一个长度为elementCount的数组
            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());

	System.arraycopy(elementData, 0, a, 0, elementCount);

        if (a.length > elementCount)//多出的置为null
            a[elementCount] = null;

        return a;
    }

    public synchronized E get(int index) {//根据索引得到元素
	if (index >= elementCount)
	    throw new ArrayIndexOutOfBoundsException(index);

	return (E)elementData[index];
    }

    public synchronized E set(int index, E element) {//设置某索引处的值,返回旧值
	if (index >= elementCount)
	    throw new ArrayIndexOutOfBoundsException(index);

	Object oldValue = elementData[index];
	elementData[index] = element;
	return (E)oldValue;
    }

    public synchronized boolean add(E e) {//在尾部添加一元素,成功了才返回true
	modCount++;
	ensureCapacityHelper(elementCount + 1);
	elementData[elementCount++] = e;
        return true;
    }

    public boolean remove(Object o) {//根据值移除某一元素
        return removeElement(o);
    }

    public void add(int index, E element) {
        insertElementAt(element, index);
    }

    public synchronized E remove(int index) {//根据索引移除某一元素
	modCount++;
	if (index >= elementCount)
	    throw new ArrayIndexOutOfBoundsException(index);
	Object oldValue = elementData[index];

	int numMoved = elementCount - index - 1;
	if (numMoved > 0)
	    System.arraycopy(elementData, index+1, elementData, index,
			     numMoved);
	elementData[--elementCount] = null; // Let gc do its work

	return (E)oldValue;
    }

    public void clear() {//清空vector
        removeAllElements();
    }

    public synchronized boolean containsAll(Collection<?> c) {
        return super.containsAll(c);
    }

    public synchronized boolean addAll(Collection<? extends E> c) {//将集合添加到vector的尾部,先扩容再利用System.arraycopy()
	modCount++;
        Object[] a = c.toArray();//把集合先变成数组
        int numNew = a.length;
	ensureCapacityHelper(elementCount + numNew);
        System.arraycopy(a, 0, elementData, elementCount, numNew);
        elementCount += numNew;
	return numNew != 0;
    }

    public synchronized boolean removeAll(Collection<?> c) {
        return super.removeAll(c);
    }

    public synchronized boolean retainAll(Collection<?> c)  {
        return super.retainAll(c);
    }

    public synchronized boolean addAll(int index, Collection<? extends E> c) {//从某一索引处添加集合
	modCount++;
	if (index < 0 || index > elementCount)
	    throw new ArrayIndexOutOfBoundsException(index);

        Object[] a = c.toArray();//把集合先变成数组
	int numNew = a.length;
	ensureCapacityHelper(elementCount + numNew);

	int numMoved = elementCount - index;
	if (numMoved > 0)
	    System.arraycopy(elementData, index, elementData, index + numNew, numMoved);//移动原数组

        System.arraycopy(a, 0, elementData, index, numNew);
	elementCount += numNew;
	return numNew != 0;
    }

    public synchronized int hashCode() {//计算hash值
        return super.hashCode();
    }

    public synchronized String toString() {
        return super.toString();
    }

    public synchronized List<E> subList(int fromIndex, int toIndex) {//截取从fromIndex到toIndex,不包含toIndex
        return Collections.synchronizedList(super.subList(fromIndex, toIndex),
                                            this);
    }

    protected synchronized void removeRange(int fromIndex, int toIndex) {//利用System.arraycopy()来移动数组达到移除元素的作用
	modCount++;
	int numMoved = elementCount - toIndex;
        System.arraycopy(elementData, toIndex, elementData, fromIndex,
                         numMoved);

	// Let gc do its work
	int newElementCount = elementCount - (toIndex-fromIndex);
	while (elementCount != newElementCount)
	    elementData[--elementCount] = null;
    }

    private synchronized void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException
    {
	s.defaultWriteObject();
    }

5.总结

a.Vector的内部是数组实现的。

b.Vector是线程安全(同步)的。

c.Vector默认长度为10,扩容时需要参考容量增幅值,若容量增幅值大于0,则扩容为 原容量+容量增幅值;若容量增幅值小于    0,则扩容为 2*原容量。若根据容量增幅值扩容后       还是小于传入的新容量参数值,则容量扩为传入的新参数。

JDK源码学习系列06----Vector,布布扣,bubuko.com

时间: 2024-10-14 03:09:10

JDK源码学习系列06----Vector的相关文章

JDK源码学习系列07----Stack

                                                               JDK源码学习系列07----Stack 1.Stack源码非常简单 package java.util; public class Stack<E> extends Vector<E> { // 版本ID.这个用于版本升级控制,这里不须理会! private static final long serialVersionUID = 122446316454

JDK源码学习系列08----HashMap

                                                          JDK源码学习系列08----HashMap 1.HashMap简介 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射. HashMap 继承于AbstractMap,实现了Map.Cloneable.java.io.Serializable接口. HashMap 的实现不是同步的,这意味着它不是线程安全的.它的key.value都可以为null.此外,

JDK源码学习系列05----LinkedList

                                         JDK源码学习系列05----LinkedList 1.LinkedList简介 LinkedList是基于双向链表实现的,它也可以被当作堆栈.队列或双端队列进行操作. public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Deque<E>, Cloneable, jav

JDK源码学习--String篇(二) 关于String采用final修饰的思考

JDK源码学习String篇中,有一处错误,String类用final[不能被改变的]修饰,而我却写成静态的,感谢CTO-淼淼的指正. 风一样的码农提出的String为何采用final的设计,阅读JDK源码的时候,有粗略的思考过,今天下班后又把<Thinking in Java>中关于final的内容重新看了一遍,对此写下一些关于自己的理解和想法. String类中final关键字的使用 final关键字,用来描述一块数据不能被改变,两种可能理由:设计.效率 final使用的三种情况:数据.方

JDK源码学习LinkedList

LinkedList是List接口的子类,它底层数据结构是双向循环链表.LinkedList还实现了Deque接口(double-end-queue双端队列,线性collection,支持在两端插入和移除元素).所以LinkedList既可以被当作双向链表,还可以当做栈.队列或双端队列进行操作.文章目录如下: 1.LinkedList的存储实现(jdk 1.7.0_51) 2.LinkedList的读取实现 3.LinkedList的性能分析 下面我们进入正题,开始学习LinkedList. L

JDK源码学习----ArrayList

                                                                         JDK源码学习----ArrayList 1.ArrayList简介 ArrayList是基于Object[] 数组的,也就是我们常说的动态数组.它能很方便的实现数组的增加删除等操作. public class ArrayList<E> extends AbstractList<E> implements List<E>, R

JDK源码学习09----HashTable

                                                         JDK源码学习09----HashTable 1.HashTable简介 Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射. Hashtable 继承于Dictionary,实现了Map.Cloneable.java.io.Serializable接口. Hashtable 的函数都是同步的,这意味着它是线程安全的.它的key.value都不可以为n

由JDK源码学习HashMap

HashMap基于hash表的Map接口实现,它实现了Map接口中的所有操作.HashMap允许存储null键和null值.这是它与Hashtable的区别之一(另外一个区别是Hashtable是线程安全的).另外,HashMap中的键值对是无序的.下面,我们从HashMap的源代码来分析HashMap的实现,以下使用的是Jdk1.7.0_51. 一.HashMap的存储实现 HashMap底层采用的是数组和链表这两种数据结构.当我们把key-value对put到HashMap时,系统会根据ha

由JDK源码学习ArrayList

ArrayList是实现了List接口的动态数组.与java中的数组相比,它的容量能动态增长.ArrayList的三大特点: ① 底层采用数组结构 ② 有序 ③ 非同步 下面我们从ArrayList的增加元素.获取元素.删除元素三个方面来学习ArrayList. ArrayList添加元素 因为ArrayList是采用数组实现的,其源代码比较简单.首先我们来看ArrayList的add(E e).以下代码版本是jdk7. public boolean add(E e) { // 检查数组容量 e