Java设计模式之《组合模式》及应用场景

摘要: 原创作品,可以转载,但是请标注出处地址http://www.cnblogs.com/V1haoge/p/6489827.html

  组合模式,就是在一个对象中包含其他对象,这些被包含的对象可能是终点对象(不再包含别的对象),也有可能是非终点对象(其内部还包含其他对象,或叫组对象),我们将对象称为节点,即一个根节点包含许多子节点,这些子节点有的不再包含子节点,而有的仍然包含子节点,以此类推。很明显,这是树形结构,终结点叫叶子节点,非终节点(组节点)叫树枝节点,第一个节点叫根节点。同时也类似于文件目录的结构形式:文件可称之为终节点,目录可称之为非终节点(组节点)。

1、我们首先来看一个目录结构的普通实现:

目录节点:Noder

 1 import java.util.ArrayList;
 2 import java.util.List;
 3 /**
 4  * 目录节点
 5  * 包含:
 6  *         1、目录名
 7  *         2、下级文件列表
 8  *         3、下级目录列表
 9  *         4、新增文件方法
10  *         5、新增目录方法
11  *         6、显示下级内容方法
12  */
13 public class Noder {
14     String nodeName;//目录名
15     //通过构造器为目录命名
16     public Noder(String nodeName){
17         this.nodeName = nodeName;
18     }
19     List<Noder> nodeList = new ArrayList<Noder>();//目录的下级目录列表
20     List<Filer> fileList = new ArrayList<Filer>();//目录的下级文件列表
21     //新增下级目录
22     public void addNoder(Noder noder){
23         nodeList.add(noder);
24     }
25     //新增文件
26     public void addFiler(Filer filer){
27         fileList.add(filer);
28     }
29     //显示下级目录及文件
30     public void display(){
31         for(Noder noder:nodeList){
32             System.out.println(noder.nodeName);
33             noder.display();//递归显示目录列表
34         }
35         for(Filer filer:fileList){
36             filer.display();
37         }
38     }
39 }

文件节点:Filer

 1 /**
 2  * 文件节点
 3  * 文件节点是终节点,无下级节点
 4  * 包含:
 5  *         1、文件名
 6  *         2、文件显示方法
 7  */
 8 public class Filer {
 9     String fileName;//文件名
10     public Filer(String fileName){
11         this.fileName = fileName;
12     }
13     //文件显示方法
14     public void display(){
15         System.out.println(fileName);
16     }
17 }

测试类:Clienter

 1 import java.io.File;
 2
 3 public class Clienter {
 4     public static void createTree(Noder node){
 5         File file = new File(node.nodeName);
 6         File[] f = file.listFiles();
 7         for(File fi : f){
 8             if(fi.isFile()){
 9                 Filer filer = new Filer(fi.getAbsolutePath());
10                 node.addFiler(filer);
11             }
12             if(fi.isDirectory()){
13                 Noder noder = new Noder(fi.getAbsolutePath());
14                 node.addNoder(noder);
15                 createTree(noder);//使用递归生成树结构
16             }
17         }
18     }
19     public static void main(String[] args) {
20         Noder noder = new Noder("E://ceshi");
21         createTree(noder);//创建目录树形结构
22         noder.display();//显示目录及文件
23     }
24 }

运行结果:

E:\ceshi\目录1
E:\ceshi\目录1\目录3
E:\ceshi\目录1\文件2.txt
E:\ceshi\目录2
E:\ceshi\目录2\文件3.txt
E:\ceshi\文件1.txt

2、组合模式

  从上面的代码中可以看出,我们分别定义了文件节点对象与目录节点对象,这是因为文件与目录之间的操作不同,文件没有下级节点,而目录可以有下级节点,但是我们能不能这么想:既然文件与目录都是可以作为一个节点的下级节点而存在,那么我们可不可以将二者抽象为一类对象,虽然二者的操作不同,但是我们可以在实现类的方法实现中具体定义,比如文件没有新增下级节点的方法,我们就可以在文件的这个方法中抛出一个异常,不做具体实现,而在目录中则具体实现新增操作。显示操作二者都有,可以各自实现。而且由于我们将文件与目录抽象为一个类型,那么结合多态我们可以进行如下实现:

抽象类:Node

 1 /**
 2  * 将文件与目录统一看作是一类节点,做一个抽象类来定义这种节点,然后以其实现类来区分文件与目录,在实现类中分别定义各自的具体实现内容
 3  */
 4 public abstract class Node {
 5     protected String name;//名称
 6     //构造器赋名
 7     public Node(String name){
 8         this.name = name;
 9     }
10     //新增节点:文件节点无此方法,目录节点重写此方法
11     public void addNode(Node node) throws Exception{
12         throw new Exception("Invalid exception");
13     }
14     //显示节点:文件与目录均实现此方法
15     abstract void display();
16 }

文件实现类:Filter

 1 /**
 2  * 实现文件节点
 3  */
 4 public class Filer extends Node {
 5     //通过构造器为文件节点命名
 6     public Filer(String name) {
 7         super(name);
 8     }
 9     //显示文件节点
10     @Override
11     public void display() {
12         System.out.println(name);
13     }
14 }

目录实现类:Noder

 1 import java.util.*;
 2 /**
 3  * 实现目录节点
 4  */
 5 public class Noder extends Node {
 6     List<Node> nodeList = new ArrayList<Node>();//内部节点列表(包括文件和下级目录)
 7     //通过构造器为当前目录节点赋名
 8     public Noder(String name) {
 9         super(name);
10     }
11     //新增节点
12     public void addNode(Node node) throws Exception{
13         nodeList.add(node);
14     }
15     //递归循环显示下级节点
16     @Override
17     void display() {
18         System.out.println(name);
19         for(Node node:nodeList){
20             node.display();
21         }
22     }
23 }

测试类:Clienter

 1 import java.io.File;
 2
 3 public class Clienter {
 4     public static void createTree(Node node) throws Exception{
 5         File file = new File(node.name);
 6         File[] f = file.listFiles();
 7         for(File fi : f){
 8             if(fi.isFile()){
 9                 Filer filer = new Filer(fi.getAbsolutePath());
10                 node.addNode(filer);
11             }
12             if(fi.isDirectory()){
13                 Noder noder = new Noder(fi.getAbsolutePath());
14                 node.addNode(noder);
15                 createTree(noder);//使用递归生成树结构
16             }
17         }
18     }
19     public static void main(String[] args) {
20         Node noder = new Noder("E://ceshi");
21         try {
22             createTree(noder);
23         } catch (Exception e) {
24             e.printStackTrace();
25         }
26         noder.display();
27     }
28 }
E://ceshi
E:\ceshi\文件1.txt
E:\ceshi\目录1
E:\ceshi\目录1\文件2.txt
E:\ceshi\目录1\目录3
E:\ceshi\目录2
E:\ceshi\目录2\文件3.txt

  从上述实现中可以看出:所谓组合模式,其实说的是对象包含对象的问题,通过组合的方式(在对象内部引用对象)来进行布局,我认为这种组合是区别于继承的,而另一层含义是指树形结构子节点的抽象(将叶子节点与数枝节点抽象为子节点),区别于普通的分别定义叶子节点与数枝节点的方式。

3、组合模式应用场景

  这种组合模式正是应树形结构而生,所以组合模式的使用场景就是出现树形结构的地方。比如:文件目录显示,多及目录呈现等树形结构数据的操作。

时间: 2024-10-10 16:02:37

Java设计模式之《组合模式》及应用场景的相关文章

JAVA设计模式之调停者模式

在阎宏博士的<JAVA与模式>一书中开头是这样描述调停者(Mediator)模式的: 调停者模式是对象的行为模式.调停者模式包装了一系列对象相互作用的方式,使得这些对象不必相互明显引用.从而使它们可以较松散地耦合.当这些对象中的某些对象之间的相互作用发生改变时,不会立即影响到其他的一些对象之间的相互作用.从而保证这些相互作用可以彼此独立地变化. 为什么需要调停者 如下图所示,这个示意图中有大量的对象,这些对象既会影响别的对象,又会被别的对象所影响,因此常常叫做同事(Colleague)对象.这

Java 设计模式 之 调停者模式

http://www.verejava.com/?id=16999137231072 package com.mediator.theory; public class TestMediator { public static void main(String[] args) { Mediator mediator=new MediatorImpl(); mediator.handle("rent"); mediator.handle("sale"); } } pa

一起学java设计模式--适配器模式(结构型模式)

适配器模式 现有一个接口DataOperation定义了排序方法sort(int[]) 和查找方法search(int[], int),已知类QuickSort的quickSort(int[])方法实现了快速排序算法,类BinarySearch 的binarySearch(int[], int)方法实现了二分查找算法.现使用适配器模式设计一个系统,在不修改源代码的情况下将类QuickSort和类BinarySearch的方法适配到DataOperation接口中.绘制类图并编程实现. (要求实现

Java设计模式之接口型模式总结

摘要: 原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6508967.html 之前认真学习了Java设计模式中的四大接口型模式,分别为:适配器模式(Adapter).外观模式(Facade).合成模式(Composite).桥接模式(Bridge). 1.在此处再温习一下四种设计模式: (1)适配器模式: 我们能够访问的类中不存在我们要访问的内容时,就可以使用这个适配器模式,当然就类而言,其实不存在什么不能被访问,这里的不能访问都是人

Java设计模式之工厂方法模式(转) 实现是抽象工厂?

Java设计模式之工厂方法模式 责任编辑:覃里作者:Java研究组织   2009-02-25   来源:IT168网站 文本Tag: 设计模式 Java [IT168 技术文章]          一 .工厂方法(Factory Method)模式 工厂方法模式的意义是定义一个创建产品对象的工厂接口,将实际创建工作推迟到子类当中.核心工厂类不再负责产品的创建,这样核心类成为一个抽象工厂角色,仅负责具体工厂子类必须实现的接口,这样进一步抽象化的好处是使得工厂方法模式可以使系统在不修改具体工厂角色

java设计模式4--建造者模式(Builder)

本文地址:http://www.cnblogs.com/archimedes/p/java-builder-pattern.html,转载请注明源地址. 建造者模式 将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 概述 当系统准备为用户提供一个内部结构复杂的对象时,就可以使用生成器模式,使用该模式可以逐步地构造对象,使得对象的创建更具弹性.生成器模式的关键是将一个包含有多个组件对象的创建分成若干个步骤,并将这些步骤封装在一个称作生成器的接口中. 适用性 1.当创建复杂

Java设计模式之结构型模式

结构型设计模式是从程序的结构上解决模块之间的耦合问题.包括以下七种模式: 适配器模式:可以将类的一个借口匹配另一个接口 组合模式:对象的组合 代理模式:一个简单的对象代替一个复杂的稍后会被调用的复杂对象 外观模式:一个类表示一个子系统 享元模式:用于共享对象,其中每个实例都不保存自己的状态.而是将状态保存在外部 桥接模式:将对象的接口与实现分离 装饰模式:动态给对象添加职责结构型设计模式是从程序的结构上解决模块之间的耦合问题 适配器模式: 原文链接:一个示例让你明白适配器模式 含义:将一个类的接

java设计模式之 装饰器模式

适AT java设计模式之 装饰器模式 装饰器模式 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构. 这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创建了一个装饰类,用来包装原有的类,并在保持类方法签名完整性的前提下,动态给一个对象添提供了额外的功能. 我们通过下面的实例来演示装饰器模式的用法.模拟一个人从想吃饭.找饭店.享受美食.结束吃饭的过程 代码展示: 首先创建一个被修饰的接口 Eat package deco

Java设计模式之享元模式实例详解

本文实例讲述了Java设计模式之享元模式.分享给大家供大家参考,具体如下: 解释一下概念:也就是说在一个系统中如果有多个相同的对象,那么只共享一份就可以了,不必每个都去实例化一个对象.比如说一个文本系统,每个字母定一个对象,那么大小写字母一共就是52个,那么就要定义52个对象.如果有一个1M的文本,那么字母是何其的多,如果每个字母都定义一个对象那么内存早就爆了.那么如果要是每个字母都共享一个对象,那么就大大节约了资源. 在Flyweight模式中,由于要产生各种各样的对象,所以在Flyweigh

折腾Java设计模式之中介者模式

博文原址:折腾Java设计模式之中介者模式 中介者模式 中介者模式(Mediator Pattern)是用来降低多个对象和类之间的通信复杂性.这种模式提供了一个中介类,该类通常处理不同类之间的通信,并支持松耦合,使代码易于维护.中介者模式属于行为型模式. 通俗点来讲就是提供一个中介平台,说到平台,那其实很容易联系到我们很熟悉的房地产中介.我们可以直接通过这个平台得到我们想要的信息,不用对象自身与其他对象交互. 买房子租房子就不需要去找房东,只需要在中介那里获取相应的×××信息.如下图那样,两方只