《Linear Algebra and Its Applications》-矩阵运算

可以说第一章《Linear Algebra and Its Applications》着重介绍了线性代数中几个核心概念(向量、矩阵和线性方程组)之间的关系(方程的同解性),那么下面这本书开始分别介绍这几个核心概念,比如从这篇文章开始,会简单的介绍矩阵方面的内容。

首先对于我们定义的计算工具(矩阵),我们有必要研究其运算规律,这个方法在定义很多新的运算符号的时候都是适用的。矩阵的加减法这里就不用累述的,非常好理解,这篇文中我们主要来讨论矩阵的乘法运算的定义过程。

其实不管是从离散的角度还是在线性代数中,矩阵乘法的法则给出似乎总是那么的唐突。矩阵乘法的运算好像是与生俱来、没什么逻辑性的定义,然而,事实是这样子的么?读过读者做够细心会发现笔者在介绍第一章的时候为引出矩阵乘法埋下了伏笔。

笔者曾经介绍道:矩阵A和向量x的乘积的自然引出,我们能够推导矩阵乘法的运算法则,推导过程如下:

能够看到,m x n的矩阵A和n x p的矩阵B的乘积便将会得到一个m x p的矩阵,而对于m x p的矩阵第一列,是Ab1,其中b1是矩阵B的第1个列向量,很显然,这里矩阵A应该拆分成m个行向量,然后每个行向量ai的n个分量和b1向量的n个分量对应相乘再相加(这是先前我们定义的矩阵和向量的乘法运算),得到m x p的矩阵第1列的第i个元素。

时间: 2024-10-12 10:04:22

《Linear Algebra and Its Applications》-矩阵运算的相关文章

《Linear Algebra and Its Applications》- 线性方程组

同微分方程一样,线性代数也可以称得上是一门描述自然的语言,它在众多自然科学.经济学有着广阔的建模背景,这里笔者学识有限暂且不列举了,那么这片文章来简单的讨论一个问题——线性方程组. 首先从我们中学阶段就很熟系的二元一次方程组,我们采用换元(其实就是高斯消元)的方法.但是现在我们需要讨论更加一般的情况,对于线性方程,有如下形式: a1x1+a2x2+…anxn = b. 现在我们给出多个这样的方程构成方程组,我们是否有通用的解法呢? 在<Linear Algebra and Its Applica

Memo - Chapter 6 of Strang&#39;s Linear Algebra and Its Applications

1.实对称矩阵的正定 2.实对称矩阵的半正定 3. Sylvester’s law of inertia : 4.Sylvester’s law of inertia 的推论: 5. SVD 6.瑞利伤: Memo - Chapter 6 of Strang's Linear Algebra and Its Applications

Memo - Chapter 3 of Strang&#39;s Linear Algebra and Its Applications

1.正交向量.正交空间.正交补空间 2.号称是本书最重要的配图 3.向量的cosine距离,投影变换,最小二乘 4.正交基与Schmidt正交化与QR分解 5.函数空间,傅里叶级数,Hilbert空间 Memo - Chapter 3 of Strang's Linear Algebra and Its Applications

《Linear Algebra and Its Applications》-矩阵的逆

矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是0的n x n的矩阵. 逆矩阵的唯一性: 逆矩阵是像实数的倒数一样唯一存在的么?我们不妨简单地证明一下.假设A的两个逆矩阵是B,C.根据定义我们有AB=I,AC=I,结合基本的矩阵运算法则,容易看到B=C=IA^-1,由此能够看到逆矩阵是唯一存在的. 如何求解逆矩阵: 如何求解逆矩阵这个问题其实能够

《Linear Algebra and Its Applications》-chaper6正交性和最小二乘法-正交性

这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: 先举个最简单的例子,在平面中,两个二维向量的点乘如果为0,那么我们可判定两个向量互相垂直,那么实际上这两个向量就是R^2向量空间上的一组正交向量. 下面推广到R^n向量空间上,给出正交性的定义: 正交集: 给定向量集合S,当S中任意两个元素都相互正交,我们称S是一个正交集. 基的一个概念其实表征一个

《Linear Algebra and Its Applications》-线性变换

线性变换: 先前我们曾经提到过,在讨论矩阵方程Ax = b和向量方程x1a1+x2a2+x3a3+…+xnan = b同解性的时候,我们曾经说过这这将呼应了矩阵乘法运算的规则.但是在这里我们首先介绍一个过渡的概念——线性变换. 考察矩阵方程Ax = b,A是n x m矩阵,x是R^n向量,由先前我们所定义的规则,b必然是R^m向量.我们抽象化这个过程,从集合论或者是函数的角度去看待这样一个明显有着映射的过程,我们将向量x视为原像,向量b视为像,而乘以矩阵A作为一种对应关系. 为什么要建立这样一个

《Linear Algebra and Its Applications》-矩阵方程

矩阵方程: 先前我们介绍过向量的线性组合,即x1a1+x2a2+xnan的形式,我们能够用含有[]的式子将其表达出来呢?(寻求这种表达方式是为了寻求运算的便利与统一),我们给出如下的定义来给出向量线性组合的另外一种形式. 可以看到,等式的右边,即向量组合的形式,我们利用向量的代数性质将其进行求和运算,我们最终将会得到一个向量b,即这个等式能够写成Ax=b的形式,而容易看到,A写成[a1,a2,…an]的形式,ai同时也是向量,即代表A是一个m x n的矩阵(m代表向量的分量数,即R^m向量),b

《Linear Algebra and Its Applications》-chaper3-线性方程组- 线性变换

两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. 由于矩阵A和向量x的乘积的性质与线性变换的定义有着密切的联系,我们能够进一步的探索矩阵A在线性变换中扮演着怎样的角色. 有了线性变换和标准矩阵的概念,我们就有了强有力的工具用来表示实际问题中一系列诸如拉伸.伸缩的线性变换了.

《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间

在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: 两个定理均在阐述如何构成子空间,其证明也只需要简单的证明构造出的子空间满足子空间H需要满足的三个条件即可.