CNN学习笔记

基本概念

卷积核:即滤波器,是一个n×n系数矩阵(n为奇数),作用是对输入图像提取某种特征,再将得到的特征输出到神经元。

在卷积网络中,隐层的参数个数只和滤波器的大小和滤波器种类的多少有关,和隐藏的神经元个数无关

隐层的神经元个数和原图像、滤波器的大小及滤波器在图像中滑动步长有关

时间: 2024-10-14 05:23:21

CNN学习笔记的相关文章

卷积神经网络(CNN)学习笔记1:基础入门

卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的

深度学习(DL)与卷积神经网络(CNN)学习笔记随笔-01-CNN基础知识点

第一天<CNN基础知识点>From:Convolutional Neural Networks (LeNet) 神经认知机. CNN的灵感来源在诸多论文中已经讲得很全面了,就是伟大的生物发现Receptive Field(感受野细胞).根据这个概念提出了神经认知机.它的主要作用就是Recept部分图像信息(或特征),然后通过分层递交相连,将各个局部特征组合成整个图像特征. 需要仔细阅读的论文包括: (1) 第一篇关于感受野功能的论文Receptive fields and functional

CNN学习笔记3

区分深度学习中epoch.iteration.batchsize (1)batchsize: 批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练(2)iteration: 1个iteration等于使用batchsize个样本训练一次 (3)epoch: 1个epoch等于使用训练集中的全部样本训练一次 eg 训练集有1000个样本,batchsize=10,那么:训练完整个样本集需要100次iteration,1次epoch.

CNN卷积神经网络学习笔记2:网络结构

在上篇笔记<CNN卷积神经网络学习笔记1:背景介绍>中已经介绍过CNN的结构,这篇笔记中,通过一个简单的CNN的例子,梳理一下CNN的网络结构的细节. 以下是一个6层的CNN网络,这个简单的CNN网络是DeepLearning Toolbox里面CNN的一个例子,后面要通过DeepLearning Toolbox中CNN的代码来进一步理解CNN的整个过程.我们输入的是1张大小为28*28的图片. 需要注意的有: 1,这里输入的是一张图片,如果我们输入了50张图片,那么下图中的每一个方框(代表一

CNN卷积神经网络学习笔记3:权值更新公式推导

在上篇<CNN卷积神经网络学习笔记2:网络结构>中,已经介绍了CNN的网络结构的详细构成,我们已经可以初始化一个自己的CNN网络了,接下来就是要用训练得到一个确定的CNN的模型,也就是确定CNN的参数. CNN本质上就是人工神经网络的一种,只是在前几层的处理上有所不同,我们可以把卷积核看成是人工神经网络里的权值W,而采样层实质上也是一种卷积运算.所以可以基于人工神经网络的权值更新的方法来推导CNN里的权值更新公式.人工神经网络里是用反向传播算法将误差层层回传,利用梯度下降法更新每一层的权值,C

学习笔记:Caffe上LeNet模型理解

学习笔记:Caffe上LeNet模型理解 Caffe中用的模型结构是著名的手写体识别模型LeNet-5(http://yann.lecun.com/exdb/lenet/a35.html).当年美国大多数银行就是用它来识别支票上面的手写数字的.能够达到这种商用的地步,它的准确性可想而知,唯一的区别是把其中的sigmoid激活函数换成了ReLU. 为什么换成ReLU,上一篇blog中找到了一些相关讨论,可以参考. CNN的发展,关键就在于,通过卷积(convolution http://deepl

Deep Learning(深度学习)学习笔记整理系列七

Deep Learning(深度学习)学习笔记整理系列 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.计算机视觉.神经网络等等基础(如果没有也没关系了,没

Deep Learning(深度学习)学习笔记整理系列之(七)

Deep Learning(深度学习)学习笔记整理系列 [email protected] http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主

Deep Learning(深度学习)学习笔记整理系列之(八)

Deep Learning(深度学习)学习笔记整理系列 [email protected] http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主