hdu4122 Alice's mooncake shop 单调队列

http://acm.hdu.edu.cn/showproblem.php?pid=4122

Alice‘s mooncake shop

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2908    Accepted Submission(s): 744

Problem Description

The Mid-Autumn Festival, also known as the Moon Festival or Zhongqiu Festival is a popular harvest festival celebrated by Chinese people, dating back over 3,000 years to moon worship in China‘s Shang Dynasty. The Zhongqiu Festival is held on the 15th day of
the eighth month in the Chinese calendar, which is in September or early October in the Gregorian calendar. It is a date that parallels the autumnal equinox of the solar calendar, when the moon is at its fullest and roundest.

The traditional food of this festival is the mooncake. Chinese family members and friends will gather to admire the bright mid-autumn harvest moon, and eat mooncakes under the moon together. In Chinese, “round”(圆) also means something like “faultless” or “reuion”,
so the roundest moon, and the round mooncakes make the Zhongqiu Festival a day of family reunion.

Alice has opened up a 24-hour mooncake shop. She always gets a lot of orders. Only when the time is K o’clock sharp( K = 0,1,2 …. 23) she can make mooncakes, and We assume that making cakes takes no time. Due to the fluctuation of the price of the ingredients,
the cost of a mooncake varies from hour to hour. She can make mooncakes when the order comes,or she can make mooncakes earlier than needed and store them in a fridge. The cost to store a mooncake for an hour is S and the storage life of a mooncake is T hours.
She now asks you for help to work out a plan to minimize the cost to fulfill the orders.

Input

The input contains no more than 10 test cases.

For each test case:

The first line includes two integers N and M. N is the total number of orders. M is the number of hours the shop opens.

The next N lines describe all the orders. Each line is in the following format:

month date year H R

It means that on a certain date, a customer orders R mooncakes at H o’clock. “month” is in the format of abbreviation, so it could be "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov" or "Dec". H and R are all integers.

All the orders are sorted by the time in increasing order.

The next line contains T and S meaning that the storage life of a mooncake is T hours and the cost to store a mooncake for an hour is S.

Finally, M lines follow. Among those M lines, the ith line( i starts from 1) contains a integer indicating the cost to make a mooncake during the ith hour . The cost is no more than 10000. Jan 1st 2000 0 o‘clock belongs to the 1st hour,
Jan 1st 2000 1 o‘clock belongs to the 2nd hour, …… and so on.

(0<N <= 2500; 0 < M,T <=100000; 0<=S <= 200; R<=10000 ; 0<=H<24)

The input ends with N = 0 and M = 0.

Output

You should output one line for each test case: the minimum cost.

Sample Input

1 10
Jan 1 2000 9 10
5 2
20
20
20
10
10
8
7
9
5
10
0 0

Sample Output

70

Hint

“Jan 1 2000 9 10” means in Jan 1st 2000 at 9 o‘clock , there‘s a consumer ordering 10 mooncakes.
Maybe you should use 64-bit signed integers. The answer will fit into a 64-bit signed integer.

Source

2011 Asia Fuzhou Regional Contest

题意:一个月饼店只在整点工作。在整点可以制作任意多个月饼。但是在不同的时间制作月饼花费的代价不一样。而且如果一个月饼做好后储存。每小时将花费S。但是储存时间不超过T。现在给你该店工作的最长时间m。和n个订单。问你完成订单的最小花费。

思路:很简单的单调队列,把日期处理成小时后,用单调队列维护下最小值就好,队列头加入新的时间点的,队列尾删除过期的。注意会有相同时间点的订单。

/**
 * @author neko01
 */
//#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <cstring>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
#define min3(a,b,c) min(a,min(b,c))
#define max3(a,b,c) max(a,max(b,c))
#define pb push_back
#define mp(a,b) make_pair(a,b)
#define clr(a) memset(a,0,sizeof a)
#define clr1(a) memset(a,-1,sizeof a)
#define dbg(a) printf("%d\n",a)
typedef pair<int,int> pp;
const double eps=1e-8;
const double pi=acos(-1.0);
const int INF=0x7fffffff;
const LL inf=(((LL)1)<<61)+5;
char s[12][5]={"Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"};
int day[12]={31,28,31,30,31,30,31,31,30,31,30,31};
struct node{
    int h,r;
}a[2555];
bool check(int y)
{
    return ((y%4==0&&y%100!=0)||y%400==0);
}
int input()
{
    char str[5];
    int d,y,h;
    scanf("%s%d%d%d",str,&d,&y,&h);
    int t=0,tmp=0,m=1;
    for(int i=2000;i<y;i++)
    {
        if(check(i)) t+=24*366;
        else t+=24*365;
    }
    if(check(y)) day[1]=29;
    else day[1]=28;
    for(int i=0;i<12;i++)
    {
        if(strcmp(s[i],str)==0)
        {
            m=i+1;
            break;
        }
        tmp+=day[i];
    }
    t=t+(tmp+d-1)*24+h+1;
    return t;
}
int q[111111];
int p[111111];
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        if(n==0&&m==0) break;
        for(int i=0;i<n;i++)
        {
            a[i].h=input();
            scanf("%d",&a[i].r);
           // printf("%d\n",a[i].h);
        }
        int t,s;
        scanf("%d%d",&t,&s);
        int front=0,rear=0,j=0;
        LL ans=0;
        for(int i=1;i<=m;i++)
        {
            scanf("%d",&p[i]);
            while(front<rear&&p[i]<=p[q[rear-1]]+(i-q[rear-1])*s)
                rear--;
            q[rear++]=i;
            while(j<n&&i==a[j].h)
            {
                while(q[front]+t<a[j].h) front++;  //过期
                ans+=a[j].r*(p[q[front]]+(i-q[front])*s);
                j++;
            }
        }
        printf("%I64d\n",ans);
    }
    return 0;
}

hdu4122 Alice's mooncake shop 单调队列

时间: 2024-12-24 14:53:04

hdu4122 Alice's mooncake shop 单调队列的相关文章

HDU 4122 Alice&#39;s mooncake shop 单调队列优化dp

Alice's mooncake shop Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4122 Description The Mid-Autumn Festival, also known as the Moon Festival or Zhongqiu Festival is a popular harvest festival celebrated by Ch

hdu 4122 Alice&#39;s mooncake shop(单调队列)

题目链接:hdu 4122 Alice's mooncake shop 题目大意:给定N和M,表示有N个订单,M个时刻可以做月饼,时刻以小时计算,任意时刻可以做若干个月饼.接着 N行为N个订单的信息,包括时间和数量.再给定T和S,表示每个月饼的保质时间和每保存一小时的开销.然后M行为 对应每个时刻制作月饼的代价.问说最少花费多少代价完成所有订单. 解题思路:单调队列或者RMQ,单调队列即用一个deque维护一个代价递增的队列,每次将头部保质期不够的剔除. RMQ可以将预处理处每个区间时刻代价的最

【单调队列】HDU 4122 Alice&#39;s mooncake shop

通道:http://acm.hdu.edu.cn/showproblem.php?pid=4122 题意:给定N和M,表示有N个订单,M个时刻可以做月饼,时刻以小时计算,任意时刻可以做若干个月饼.接着N行为N个订单的信息,包括时间和数量.再给定T和S,表示每个月饼的保质时间和每保存一小时的开销.然后M行为对应每个时刻制作月饼的代价.问说最少花费多少代价完成所有订单 思路:维护单调队列,把之前的花费大于当前的pop掉,把不满足保鲜期内的pop掉 代码:https://github.com/Mith

hdu 4122 Alice&#39;s mooncake shop

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4122 题意大意是Alice开着一家月饼店,可以接到n做月饼的订单,而Alice只有在从2000年一月一日0点为第一个小时开始的前m个小时内做月饼,而且只能在整点 的时候做月饼,并且做月饼不花费时间,也就是一瞬间就可以做超级多的月饼,而每个月饼有t个小时的保质期,每个月饼保存每小时需要花费s元,而在可以 做月饼的m小时内,不同小时做月饼花费的钱也不同,每个订单都有交付订单嗯达时间,某年某月某日某时交付该

HDU 4122 Alice&#39;s mooncake shop --RMQ

题意: 一个月饼店做月饼,总营业时间m小时,只能在整点做月饼,可以做无限个,不过在不同的时间做月饼的话每个月饼的花费是不一样的,假设即为cost[i],再给n个订单,即为在某个时间要多少个月饼,时间从2000年1月1日0时开始计算,必须在每个订单的时间之前完成这么多月饼,月饼还有保质期T小时以及保存费用S每小时,现在问满足这n个点的最小成本是多少. 解法: 因为月饼有保质期T,所以第i个月饼只能在[Ti-T+1,Ti]时间内做好.如果时间j有订单,假设在时间i做月饼是最好的,那么这个订单每个月饼

【HDOJ】4122 Alice&#39;s mooncake shop

RMQ的基础题目,简单题. 1 /* 4122 */ 2 #include <iostream> 3 #include <sstream> 4 #include <string> 5 #include <map> 6 #include <queue> 7 #include <set> 8 #include <stack> 9 #include <vector> 10 #include <deque>

hdu 4122 Alice&#39;s mooncake shop (线段树)

题目大意: 一个月饼店每个小时做出月饼的花费不一样. 储存起来要钱,最多存多久.问你把所有订单做完的最少花费. 思路分析: ans = segma( num[]*(cost[] + (i-j)*s) ) 整理一下会发现式子就是 cost[]-j*s + i*s 对于每一个订单,我们把i拿出来分析 所以也就用cost - j*s 建树. 然后在储存期间找到最小的花费就行了. #include <cstdio> #include <iostream> #include <algo

hdu 4122 Alice&amp;#39;s mooncake shop (线段树)

题目大意: 一个月饼店每一个小时做出月饼的花费不一样. 储存起来要钱.最多存多久.问你把全部订单做完的最少花费. 思路分析: ans = segma( num[]*(cost[] + (i-j)*s) ) 整理一下会发现式子就是 cost[]-j*s + i*s 对于每个订单,我们把i拿出来分析 所以也就用cost - j*s 建树. 然后在储存期间找到最小的花费即可了. #include <cstdio> #include <iostream> #include <algo

单调栈/单调队列/RMQ

在上上周的交友大会中,队长大人提到了st算法,然后仔细的发呆了一个星期,于是就开始做队长的专题了, 6天后的我总算在此专题做题数目和队长一样了..明早没课,准备通宵把这几天的零散的记忆整理一下. HDU 3530 Subsequence 一开始想为何不能m和k一起放到while语句里进行处理 nowmax和nowmin保存了i之前的最大和最小值,假设此时已经出现不满足k和m的序列(A)了(比k大or比m小or both),然后我们往后找,发现了一个比序列(A)的min更小的值(me),此时now